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A CHARACTERIZATION OF BOUNDED-INPUT BOUNDED-OUTPUT
STABILITY FOR LINEAR TIME-INVARIANT SYSTEMS WITH
DISTRIBUTIONAL INPUTS*

CHI-JO WANG' AND J. DANIEL COBB'

Abstract. We consider linear time-invariant operators defined on the space of distributions with left-bounded
support. We argue that in this setting the convolution operators constitute the most natural choice of objects for
constructing a linear system theory based on the concept of impulse response.  We extend the classical notion of
bounded-input bounded-output stability to distributional convolution operators and determine precise conditions
under which systems characterized by such maps are stable. A variety of expressions for the “gain” of a stable
system is derived. We show that every stable system has a natural threefold decomposition based on the classical
decomposition of functions of bounded variation. Our analysis involves certain extensions of the Banach spaces L?
in the space of distributions.
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1. Introduction. The concept of impulse response has traditionally played a central role
in linear system theory. In spite.of this fact, certain fundamental system-theoretic ideas have
apparently not been developed on a mathematically rigorous level for systems with arbitrary
distributional inputs and outputs. In particular, an extract characterization of the impulse
and step responses that correspond to bounded-input bounded-output (BIBO) stable systems
has not previously appeared in the literature. As an illustration of the problem, recall that
if a linear time-invariant system is described by convolution of its inputs with a measurable
function 4, then the system is BIBO stable if and only if » € L!. (See, e.g., [1, p. 388].)
This characterization is inadequate, however, for studying classes of systems where /# may be
a distribution since even a simple all-pass system has impulse response § ¢ L!. Obtaining a
complete description of stable distributional systems is the primary goal of this paper.

A somewhat more limited framework than ours that addresses this problem appears in
[2, p. 108], where systems are viewed as convolution operators and the impulse response is
restricted to be a measurable function plus a linear combination of time shifts of the unit
impulse. (In [2] the time-varying case is also included.) Thus, systems that differentiate the
input are not included in [2], nor are more exotic cases such as the examples we present in §5.
Our framework includes that of [2] (restricted to the time-invariant setting) and gives a more
general framework for linear systems and, in particular, BIBO stable systems.

In §2, we consider the problem of meaningfully characterizing linear time-invariant sys-
tems in terms of their impulse responses. To set the stage for stability analysis, in §3 we
pose and solve the problem of extending the Banach spaces L” in the space of distributions
for 1 < p < oco. In §4 we define BIBO stability for convolution operators on distribution
space and obtain exact conditions on the impulse and step responses of a BIBO stable system.
Expressions for the induced norm or “gain” of a stable operator with bounded inputs are also
established. Section 5 contains a discussion of a three-fold decomposition applicable to all
BIBO stable impulse responses. Qur results are summarized in §6.

2. Preliminaries. We need a brief introduction to the theory of distributions. (See [3]-
[6].) If ¢ : R — R, define the support of ¢, i.e., supp g, as the closure of the set {z | ¢(z) # 0},
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and let o ¢ be the translation of ¢ defined by (o,¢)(¢) = @(t — 7). Let K be the space of
C* functions ¢ : R — R with supp ¢ bounded, and let K’ be the dual space of K. (See
[6] for an exact description of the topology of K.) A distribution f is an element of X', i.e.,
a continuous linear functional ¢ — (f, ¢) on K. For f € K', supp f is defined to be the
complement of the largest open set U C R such that supp ¢ C U implies ( f, ¢) = 0. We may
also define the time shift o f of a distribution f by (0. f, ¢) = (f, 0_.¢) and the derivative
fof fby (f,9) = —{f, ¢). Denote the ith distributional derivative by f). It is easy to
show that the time shift and differentiation operators commute and that

;;‘i‘(o'rfa @) = (o f, 0).
T

The unit impulse § is defined by (8, ¢) = ¢(0). Also, any function f that is locally
L! determines a distribution according to (f, ¢) = [ fo. (Functions that coincide a.e. are
identified.) In this way, we may view functions in L? as distributions for 1 < p < oco. In
particular, the unit step function § may be considered a distribution. Define §; = ¢, and
6, = 0,8. If f islocally L and differentiable a.e. in the classical sense, denote this derivative
by f'. It is an important fact that there exist f such that f # f. This may occur in trivial

ways (e.g., 6 = 8, but & = 0 a.e.), but such cases also exist where f is continuous. (See §5.)
Define K, = {f € K'|supp f C [z, 00)} and

K, =|Jk:.

TeR

Convergence in X' is defined via its weak* topology, which has a subbasis consisting of
all sets of the form

Upe = {f +g11{f.0)| <1},

where ¢ € K and g € K'. In terms of convergence, this means that a sequence (or net) f,
converges to f iff (f,,¢) — (f,¢) forall ¢ € K. Thus a linear operator T : K, — K/, is
weak* continuous iff { f,,, ¢) — 0 implies (T'(f,), ¢) — 0. A'linear operator T : K\ — K/,
is causal iff inf(supp T'(f)) > inf(supp f) forall f € K.

We are especially interested in convolution operators; the convoiution of any pair
f.g € K/_is defined as follows. It is shown in (3, p. 100] that the map (@) = (8, 0_,0)
defines a C* function. Since ¢ has bounded support, supp ¥ is bounded above. Choosing
¥ € K to be any function in K such that ¥ (r) = ¥ (¢) for all ¢ > inf(supp f), we define
(f*g, 9} = (£, ¥). This definition is unambiguous, since { f, y) = 0 whenever supp y N supp
@ = ¢. Convolution can be shown to be commutative and to satisfy f*§¢) = f@._ Also, if
h= f*g,h = f*g = f*g. A convolution operator T : K L= K 4 isan operator of the form
T(u) = h*u, where h € K. For any convolution operator, T(6) = T(8)*0 = T(8); T is
causal iff € K. We will often refer to the following basic result from [3, p. 105] concerning
continuity of convolution operators.

LEMMA 2.1. Let T be a convolution operator with T (v) = h*v for every v, and let
un — u be a convergent sequence (or net) in K', . If there exists a t € R such that either supp
h C (—oo, t] orsupp u, C [r, 00) Vn, then T (u,) — T (u).

Let Co = {f : R — R| f is continuous, f{—00) = f(o0) = 0} with norm

Il f oo =Sltlplf(t)I-

We denote by BV the space of functions f : R — R with bounded variation. Set NBV -
{f € BV | f is left-continuous, f(—00) = 0}, and let Var(f) be the variation of f. From [7,
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Ch. 6], NBYV is the dual of Cy with induced norm

I flln = Var(f).
In addition, let DBV = {g € K’ | g € BV} and define

liglla = Var(g).

It is easy to verify that || - ||; defines a norm on DBV and that NBY and DBV are isometrically
isomorphic under the map g — ¢; hence DBV may also be viewed as the dual of Cq. It is
easy to show that X is dense in Cy and that the norm || - ||, satisfies

(1) I flla = sup [{f, o} = sup qo(t)dg(t)l
llglloo=1 Wloo=t ' © ¥

forany f =g € DBV.

Recall thatevery f € BV hasadecomposition (unique a.e.) of the form f = fi+ fo+ f3,
where fi is bounded and absolutely continuous, £, is a bounded saltus function (ie., f2 =
Do, 0, where T |o;| < o), and f3isasingular function (i.e., f3 is continuous and nonconstant,
fzeBV,and f; =0ae.).

Define LY, BV,, and DBV, to consist of the L”, BV, and DBV distributions f € K’,
respectively, with inf(suppf) > —oo. For p < oo, LY is a dense subspace of L”. On the
other hand, the closure of LY is a proper subspace of L, namely,

L =1fe€L®] ess sup |f(t)l—>0asn—->oo}.

te(—00,—n]

Let L[ ., denote the L* functions f with supp f C [0, 00). Note that L[y ., L%, BV,,and
DBV, may be viewed as subspaces of X, .

The first question we address is that of determining which operators T : K/, — K/, canbe
justifiably called “linear systems.” Clearly, T should be linear. Also, since we wish to develop
a theory based on the concept of impulse response, we need to establish conditions under
which T () uniquely characterizes the operator 7. We will limit ourselves to time-invariant
operators, although the results of this section can be generalized considerably. As a first step,
we might also impose continuity on 7', since continuous linear operators are easier to work
with. These constraints and the following lemma lead to Theorem 2.2.

LEMMA 2.2. Lett € R and

k
I, = !fe K'|3t: =1, B suchthatf=Z,3i5t.-]-

AN

Then I, is weak* dense in K.
Proof. Using an overbar to denote weak* closure, it is clear that I, C K, = X,

1. C K!. We will demonstrate that I, > K, D f/,b D K., where

£ SO

K: ={p € K| supp ¢ C [1, 00)}, ', =1{f € K. | supp f is bounded}.

Let ¢ € K withsupp ¢ C [1, T + A] and define

A A A
y”=Z;¢(T+k;l—)6<t—-'[—k;‘>.

k=0



990 CHI-JO WANG AND J. DANIEL COBB

Forany ¢ € K, {y», ¥) is a sequence of Riemann sums converging to (¢, ¥); hence, y, — ¢
weak*. Since ¢ is arbitrary, I, D K, and I, D K,. Let ¢ € Ko, ¢, — & weak*, f € K.,
and ¥, = f*¢,. FromLemma2.1, vy, € K, and v, — f. Hence, K; D K., and K.D —I?/rb.
Finally, let g € K, and let n, € K satisfy n,(¢) = 1 for0 <t < n. Then 7,g € K/, and
nng — g weak*, so E/tb DKL O

THEOREM 2.3. LetT : K ; - K ; be a weak* continuous, linear, time-invariant operator.
Then T (u) = T (8)*u for allu € K.

Proof. Suppose u € K. From Lemma 2.2, for any weak* neighborhood U of u, there
exists a v € U of the form

V= iﬂist,-

i=1

with ¢; >

1 foralli. Let ¢ € K. From linearity and time-invariance of T,

(T(v), 9) =(T(d),¥),

where

k
v=) Bio_e.
i=1
Note that € K and ¥ (t) = (v, o_,¢) forall ¢t > 7. Thus

(T, ¥) =(T©®) v, 9).

Since ¢ is arbitrary, T(v) = T(8)*v. From Lemma 2.1, T (&) = T (8} u. 0

Unfortunately, the converse to Theorem 2.3 is false; i.e., a convolution operator may fail
to be weak* continuous. From Lemma 2.1, boundedness of T'(8) is sufficient to guarantee
contimuity of T. The next result establishes the converse.

THEOREM 2.4. Let T : K| — K/ be a weak* continuous convolution operator. Then
supp 7'(8) is bounded.

Proof. Suppose supp T'(8) is unbounded. Then there exist sequences ¢, € K anda, € R
such that supp ¢, C [a,, an + 1], o, — 00, and (T (), ) = B, # 0. Let

digi(t)
drt

Yo = max
i<n

1eR

and i, = ﬁa_n(pn. From [3, p. 2], ¥, — 01in K; hence, {,} is a bounded subset of K. Let

fa= g,

Bn
Then f, — 0 weak*, but

sup{T ()" fu, Ym) = (T (&) fo, ¥n)

= <"ﬁ%oﬁanT<a>, V)

= %(T((S), RYnOy, Wn)

n

l

(T8, ¢n)

™

n

il

9



so T(8)* f, does not converge uniformly to O on bounded subsets of XK. From [4, pp. 55-56],
T(8)* f,, does not converge to 0 weak*, so 7 is not continuous. 0

It follows from Theorem 2.4 that there exist many familiar examples of linear systems
that are characterized by weak* discontinuous convolution operators. For example, 6 has
unbounded support, so a simple integrator is discontinuous. In particular, the sequence §_, —
0 weak* as n — o0, but its integrals 6_, converge to the constant distribution 1. In view of
such examples, we choose not to restrict ourselves to weak* continuous operators.

Unfortunately, an arbitrary class of discontinuous operators 7 in general is not uniquely
characterized by the values 7'(8), since T'(8) only determines the action of a linear time-
invariant operator on the proper subspace span {8; |7 € R} ¢ K %+ On the other hand, the
distributions T'(8) do uniquely characterize the family of convolution operators. In fact, it
is easy to show that h*u = O for every u € K/ implies & = 0, s0 T — T(5) maps the
convolution operators one-to-one onto K',. Thus any linear time-invariant nonconvolution
operator has the same impulse response as some convolution operator.

Based on these observations, we define a linear time-invariant system to be a convolution
operator T : K, — K/ . In the next section, we develop the machinery that will enable us to
define and characterize BIBO stability for such systems.

3. Extension of normed linear spaces. In this section we examine the problem of ex-
tending L” in K’ for arbitrary p. We do this because L! is known to play a role in characterizing
BIBO stability of an operator and because L is used in the definition of stability. Values
p € (1, co0) are not directly related to stability but can be easily handled along with p = co
and are therefore included. In fact, the problem can be couched in much more general terms
without substantially increasing the level of difficulty.

Let X be a Hausdorff topological vector space over R, and let Y C X be a normed linear
space. Then Y has two topologies: the norm topology and the one inherited from X. Denote
the topology of X by 7 (i.e., 7 is the family of all open subsets U of X), let 7y be the relative
topology on Y generated by 7 (i.e., 7y consists of all sets U N Y). Also, let B(y,r) C Y be
the norm ball about y with radius ». We make the following assumptions.

AD YU e T, UNY #¢.
A2) YU € T andVy € UNY, 3¢ > Osuchthat B(y, &) C U.

A2 arr rTr v

= T il shina nsn 1N
H0) U 2 dulnudLu I

Y — B(0, 1).

Assumption A1) states that Y is dense in X relative to 7. The other two assumptions give
upper and lower bounds on 7y. Assumption A2) states that the norm topology on Y is stronger
than or equal to 7y, while A3) says that B(0, 1) is closed in 7y.

Suppose Y has norm jf - ||, letx € X, and let {Ug} C 7 be the family of all neighborhoods
of x. Define

@ lxf = Sl;p yeié;fny Ivii-

In view of A1), [x[|¢ is well defined and determines a function || - ||¢ : X — [0, oc). The next
result establishes that || - ||¢ is a natural extension of || - |} to all of X.

PROPOSITION 3.1. 1) || -l and )| - || coincide on Y.

2) |- ¢ is lower semicontinuous on X relative to T .

3) Ifiix|l® < oo, thenforeverye > 0and T -neighborhood U of x there existsay € UNY
such that

Iyl < fxl® + e

4) If| - ¥ : X — [0, 0o] satisfies 1)-3) (replacing e with f throughout), then | - |/ =
-1
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Proof. 1) Forx e Y,

ot iyl < il

for all B, so |x||¢ < ||x| follows immediately from (2). Suppose ||x||¢ < a < |x|[. Then (2)
states that for every g and ¢ > O there existsa y € Ug NY such that [|y|| < ||x||° + &. Setting
£ =a — |x||® yields |ly]| < a. Hence Ug N B(0, a) # ¢, and B(0, a) is not closed relative to
7. Thus B(0, 1) is also not closed, contradicting A3). Therefore ||x||° = ||x}i.

2) We need to show that

Y o={xeX|Ix|*>R)

R

is T -open for every R < o0, (See [8, p. 84].) From (2) we have

3 Z = {x € X |3 a T-neighborhood U of x and ¢ > 0
R
such that ||yjl > R+eVyeUNY}

If x € ), for some R, then U and ¢ are determined by (3). Infact, U C ) z,s0 . is open.

3) This follows immediately from (2).

4) If ||x||¢ = oo, ||x]l/ < |[x]|¢. Suppose that ||x{|® < oo and & > O are given. From
2), there exists a 8 such that ||y[| > [ix]}f — ¢ for every y € Ug. Setting U = Ug in 3)
guarantees the existence of a z € Ug N'Y such that [|zf < |lx]|* + 5. Setting y = z yields
lxif < |ix||¢ + &. Since ¢ is arbitrary, ||x||/ < ||x||¢. Interchanging the roles of “¢” and “ f”
and applying the same arguments gives ||x £ > [lx[|°. 0

LetY, = {x € X |||x|I® < oo}. From Proposition 3.1, 1), it is obvious that ¥, D Y. We
refer to Y, as the X-extension of Y. The next result further justifies this terminology.

PROPOSITION 3.2. 1) Y, is a subspace of X.

2) {-Y¢isanormony,.

Proof. 1) If x € Y, and @ € R, then

¢ =sup inf
laxi =sup _inf i1

e)) = e S‘;P yeiUrgﬂY Iyl
= |a| lx|l*
< 0.

Furthermore, if x;, x; € Y, and Upg isa neighborhood of x; +x3, then there exist neighborhoods
Vs and Wy of x; and x,, respectively, such that Vg 4 Wy C Up. Hence,

flxy +x2[| =sup inf iyl
B YE Y

<sup inf +
) =< ﬁp it ly1 + y2li
y2eWgnY
< fxell® + x2ll®
< 00,

Thus ax and x; + x; belong to Y,, and 1) follows.
2) In view of (4) and (5), to demonstrate 2) it remains to show that ||x]|¢ = O implies
x = 0. Indeed, ||x||¢ = O implies

6 ; -
(®) Jnt Iyl =0
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for every B. Since X is Hausdorff, for x # O there must exist disjoint 7 -neighborhoods
Ug and V of x and 0, respectively. From assumption A2), there exists an & > 0 such that
B(0,&) C V. Thus B(0, &) N Ug = ¢, contradicting (6). a

Roughly speaking, Propositions 3.1 and 3.2 say that 1) || - ||° is the smallest possible
extension of || - || such that ||x||¢ is consistent with 7 -approximations to x from within ¥, and
2) Y, is the largest subspace of X upon which || - ||¢ is a norm.

We may now specialize these ideas to X = K/, and Y = L. First note that assumptions
A1) and A2) follow easily from [4, §I1.4.4] and [3, §1.1.8]. The next result verifies assumption
A3).

PonpnerTinn 22 Ry
A NDNUVIUDLIIVIN J.J. U\

Proof. Suppose B(0, 1) is not weak* closed. Then there exist ¢ > O and f € L" such
that || fl, = 1+ ¢ and such that, for each ¢ € K, there exists a g € L} with |jg||, < 1 and
I{f — & @)| < §. Let g be conjugate to p. Since K is dense in L9 using |- lig for g < oo,
we may choose ¢ € K such that |l¢|l, = 1 and |(f, ¢)| > 1 + 5. To handle the case g = o0,
we note that X is dense in Cy, so [7, Thm. 6.19] guarantees the existence of a ¢ € K with

lello = Land |[{f, @) > 1+ 5. Thus, for arbitrary p, [(g, ¢)| < 1 and

\ TP jciun ak* closed (relative tc X' ) o

n 1 ok w1
v, 1;;1_,_,. is weak ciosea (7 ive 1o DL )Jjor L =

]
A
E)

&
—<|f<pl~|g<p {f =& 0l <7
This is a contradiction, so B(0, 1) is closed. 0
Since A1)-A3) are satisfied, the K/, -extension L, of L} and its norm || - ||¢, are well

defined. The following two results characterize L', more precisely.

PROPOSITION 3.4. Let 1 < p < oo. Then LY, = LY.

Proof. Suppose f € K' — L%, let M < oo be given, and let g be conjugate to p. Since K
is dense in L9 relative to || - ||, the dual of K with || - || imposed on it is just L7. Thus there
exists a ¢ € K with ||¢||, = 1such that |(f, ¢)| > M + 1. Furthermore, there exists a weak*
neighborhood U of f such that |igll, > (g, )| > M forall g € U N LE; thus || f]|¢, = M.
Since M is arbitrary, || f]|4 = oo and f ¢ L%,. Hence L}, = LY. 0

The case p = 1 is somewhat more challenging.

PROPOSITION 3.5. Lire = DBV, and | x| = ||x|ls for all x € DBV,..

Proof. Let

I flla, f € DBY,

||f||D=[ o ¢ DBV

It suffices to verify 1)-3) in Proposition 3.1. If f € L!, then f = g for some absolutely
continuous g. Hence

(o]

Ilf||D=Var(g)=/ 1|dg(t)l=/ lg@lde = fl,

[e9]

and 1) holds.
Toprove 2),let R <ooand Y p = {f € K'||| flip > R}. For f € ), we have from
(1) that

sup [(f, o} =Ifllp > R.
pek
flelloo=1

Hence, there exists a ¢ € K with ||¢|l., = 1 such that |{f, ¢)| > R. Let

U={geK'|I{f—g o)l <l{fio)l— R}
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U is a weak* neighborhood of f. If g € U,

KAl =g ol = (f —g. o)l <{{f. o) = R,
so }{g, ¢}} > R. Hence,

lglo = sup l{g, @) > R.

lplloo=1

Thusg € 3 pand U C Y ,. Hence }_ is weak* open, and | - || p is lower semicontinuous.

Condition 3) can be proven directly using elementary analytic arguments based on the
definition of Var(-), but here we supply a functional analytic proof that is more amenable
to generalization. Let U be a weak* neighborhood of f, and let ¢ > 0. Then there exist
©1,...,9s € K suchthat h € U whenever |(f —h, ¢;)| < Lforalli. If By, ..., B € R, then

S Biren] = (£ Bl < 11| B

Noting that K C L and that L is the dual of the Banach space L 1 it follows from [9, Thm. 5,
p. 109] that there exists an # € L' such that (h, @) = (f, ¢;) for all i and |{A]l, < || flla + g
Note that |(f —h, ¢;)| = 0,s0h € U. Since L} isdense in L' relative to || - ||, (and therefore
also weak*), there existsag e U N L}r such that |gll; < || flls + &. 0

We can make slight modifications to the arguments of this section and construct an
extension LY of L? in K’. In this way, results similar to Propositions 3.1, 3.4, and
3.5 are obtained; ie., LY = L? for 1 < p < oo and L; = DBYV. This construction has
the advantage that LL} is a Banach space, while L}H, is not; however, convolution is not defined
on all of L, so we must restrict ourselves to L ,.

Besides stability analysis, another important application of our extension theory occurs in
treating minimum-norm optimization problems over K'. For example, the issue of extending
a quadratic cost functional on L2 to K’ arose naturally in the earlier work of one of us [10]. It is
easily seen that [10, Prop. 1] follows immediately from Proposition 3.1, part 2) and Proposition
34

4. BIBO stability. Proposition 3.4 shows that “boundedness” of a distribution f € K,
is most naturally interpreted to mean that f € LY. Hence, we define a linear operator
T : K, — K/ tobe BIBO stable if T(L?) C LY. Clearly, this definition extends the
classical one, as long as u, T'(u) € K/,.

Since convolution operators satisfying 7' () € L are known to be BIBO stable, a natural
conjecture is that the convolution operators with kernels in the extension space L}re described
in Proposition 3.5 coincide exactly with the stable operators. This idea is supported by the
fact that § € L!,, since 8§ = 6 and § € BV,, and 60 ¢ L}, fori = 1,2,3,..., since
84=1 ¢ BV. It is easy to show that T'(u) = 6©*y defines a stable operator iff i = 0.

Corresponding to each convolution operator T we may associate a T : K — C* defined
by

T(p)(t) = (T(8), o).

Indeed, it is established in [3, p. 100] that T takes values in C*® with T((p)(t) = 0 for all 1
in some interval [z, 00). The following result provides preliminary information about BIBO
stable operators.

LEMMA 4.1. Let T : K — K/, be a convolution operator.

1) If T is BIBO stable, then

sup |IT (1))l < 00.

oo
ueL+

lultoo=1
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2) T is BIBO stable iff

sup /oo IT(@)(t)|dt < 0.

pek —
=1

Proof. 1) Let P be the restriction of T to L5 oy We begin by showing that P is contin-
uous relative to || - || o-

Let u,u; € LE’&OO) and ||u; — ulloc — 0. Suppose there exists a v € L* such that
| P(u;i) — vllw — 0. Since weak* topology is weaker than norm topology on L™, u; — u
weak* and P(u;) — v weak*. From Lemma 2.1, P is weak* continuous, so P(u;) — P(u)
weak*. Since weak* topology is Hausdorff, P(u) = v. The continuity of P follows from the
closed graph theorem.

Now let u; € LY with Jlu; |l — 0. For each u;, there exist 7; such that o, u; € L o)
Also, |lo,u;llo = ||ttillcoc = 0. From the continuity of P and time-invariance of T,

1T Wi)lloo = N0z, Plomui)llo = | Po,ui)llec — 0.
This shows that T is continuous or, equivalently,

sup |7 (w)lles < 00

llefoo=1

2) (sufficient) Letu € LY. From the definition of convolution on K’, we have

(T (W), ¢) = f uOT (@)() dr;

oo

hence

o0

KT (), 9} < ”u“oof \T()(1)|dt

and

sup KT (u), p)| < oo.

llell =t

Since K isdense in L', T (u) extends continuously to a unique linear functional on L'. Hence,
T(u) € L.
(necessary) From 1),

o
sup - sup 1[ u@®T(p)(1)dt| = sup sup (T (u), p)|
ll::::::l s bk i

< sup [Tl

uel™®
fulico=1

< 00.

Letg € K and u; (1) = sgn(T(p)(t))6-i(¢). Then

[ F@orar= lim [ woFewar

g —

< sup
uSL‘f
llelloo=1

3

f (O T (0)(1) dt

o0
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SO

oo

sup IT(@)(®)|dt <o0. T

pek -
lleliy =1
Lemma 4.1, part 1) makes the striking statement that every stable convolution operator
is also continuous relative to || - ||. In system-theoretic jargon, this means that, in the time-
invariant case, BIBO stability implies that small changes in the system input give rise to only
small changes in the output. It is an interesting fact that this statement is demonstrably false
in the time-varying case.
We are now in a position to give our main result.
THEOREM 4.2. Let T : K, — K| be a convolution operator. The following statements
are equivalent.
1) T is BIBO stable.
2) T@) e L,
3) T(®) € BV,.
Proof. The equivalence of 2) and 3) is obvious from Proposition 3.5. To prove that 3)
implies 1),letp € K, u € L, and s = T (0) and note that

oo}

(T(W), ¢) = / u ()6, o) di

—00

= — /‘oo u(t)(s, o, @)dt

o0

= _/oo /00 u(t)s(v)t + tv)dr de

= /00 /00 u(t)e(t + t)ds(r)dt

= foo (/oo u(t — t)ds(r)) p(t)dt,

Tu)(t) = /oo u(t —t)ds(r) a.e.

—oQ

SO

and
[T (u)(t)| < llullo Var(s) a.e.

Thus T(u) € L.

Finally, we show that 1) implies 2). From [11, Thm. 2.3.9] and Lemma 4.1, part 2),
we know that there exists a measurable function g : R? — R with g(¢,) € L for all
t, ffooo g(, T)e(t) dt absolutely continuous,

ess sup Var(g(-, 7)) < o0
and
~ d ™
T =15 [ stopmar

forallg € XK.
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Since T is time-invariant,
[e.]

L t)d—d/w(tt)Ud
dt _oog » T)PLT — 1o r_dt ﬂoog 0, T)p(T)dT.

forall¢,7 € R, ¢ € L'. Integration and a change of variables yield

/ gt v +)p(r)dr =/ gt —to, )o(r) dr.

Thus g(¢t, T + 1) = gt — 1o, t) forall ¢, 1y, t. Set s(¢) = g(—1¢,0). Thens € BV and

glt,v) =gt —7,0) =s(r —1),

SO

DBV,. O
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Our next objective is to obtain a more detailed picture of the additional structure imposed
on a linear system by stability. We begin by considering certain extensions of the operators T

and T.

Since every stable T is continuous on L relative to || - ||, €ach such operator may be
extended uniquely to a continuous linear operator Tp : Lg° — L°. Similarly, Lemma 4.1,
part 2) also states that T is BIBO stable iff T(K )y ¢ L' and T is bounded using the L' norm
throughout. In this case, since K is dense in LT extends uniquely to a continuous linear

operator T, : L' — L1, It is easy to show that Ty and T, are time-invariant.

THEOREM 4.3. Suppose T : K| — K/, is a BIBO stable convolution operator and

s =T(8). Let T, : L™ — L be defined by

T,u)(t) = /m u(t — 1) ds(@).

[o.¢]
Then
1) T.(u) = To(u) forallu € L.
o0

2) i((p)(t)=/ ot + t)ds(z) forallp € L.

3) T, is the adjoint of i.
Proof. 1) As in the proof of Theorem 4.2,

T)(t) = foo u(t —t)ds(t)

{o o]

for any u € LY. Since T, is continuous relative to || - [0, 1) follows immediately.
2) Forany ¢ € K,

T(p)(t) = (5, 0_49)

= _(Sv U——t¢)

='fw s()e@ +1)dr

o0

=/ fp(t+t)ds(t).

o

Thus i((p) = 7((/;) forall p € K. Since i is continuous relative to || - (|1, 2) follows.
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3) Lets € BV, u € L*, and ¢ € L'. Applying Fubini’s theorem and a change of
variable, we have

/00 u(t) (/00 ot + r)ds(t)) dt = /00 (/00 u(t — 1) ds(r)) p(t)dt

o ~ o0
J[ u(t)Te((p)(t)dtzf T.(w)(e(t) dt. 0

or

!
8
.
8

Note that the proof of Theorem 4.3 applies even if s € BV — BV, . Hence, the idea
of a stable system whose step or impulse response does not have left-bounded support is

not extend easily to K’ or even K/, .

To conclude this section, we give several equivalent expressions that quantify the “gain”
of a stable operator.

THEOREM 4.4. For any BIBO stable convolution operator T : K. — K/,

sup IT (Wl = sup I1T(@lloo = sup 1T (@)ll1 = Var(T(©)) = IT@®)II5.

el uel®@ pell
{luljoo=1 llely =t

fulloo=1

Proof. The-fisst equality folows from continuity of T: Since the norms of adjoint opera-

tors must coincide, the second identity holds. The next equality follows from the representa-

tion of 7, established in Theorem 4.3. The last identity follows immediately from Proposition
3.5. 0

5. Additional properties of stable systems. In view of the Theorem 4.2, part 3) the
step response of every BIBO system can be decomposed as T'(0) = s; + s2 + 53, where s;
is absolutely continuous, s, is saltus, and s3 is singular. (See [12].) Thus, the corresponding
impulse response is T (8) = hy + hy + k3, where h; = s;. Since s is bounded and absolutely
continuous, k| € Li. Also, since s, is a saltus function,

@) hy =Y 0i(8y),

where 3 o] < oo. Hence the impulse response of any stable system can be uniquely
decomposed into the sum of an L function, an impulsive distribution, and the (distributional)
derivative of a singular function.

The distribution 43 = §3 is particularly interesting and apparently has not been treated in
the literature as a viable impulse response. Distributions of this type illustrate the fact that, for
a function s : R — IR, the operations of differentiation and identification with a distribution
do not in general commute, even if s is continuous. Indeed, the derivative 55 of 53 as a function
vanishes a.e., so s is identified with the distribution 0. On the other hand, s; is by definition
not constant a.e., hence its distributional derivative s; does not vanish.

A classical example of a singular function on [0, 1] is the Cantor function, which we
denote by co. (See [12, p. 50].) Define

0, t <0,
c(t) = 3 colt), O<t=1,
1, t> 1.

Then c is nondecreasing and singular on R. Since Var(c) = 1, Proposition 3.5 gives ||¢||§ = 1.
The support of the distribution ¢ is simply the Cantor ternary set, which is uncountable and
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has Lebesgue measure zero. (See {12, p. 49].) Note that ¢ has a far more elusive structure
than a conventional impulsive distribution (7). Nevertheless, Theorem 4.2 guarantees that the
system governed by T'(u) = ¢ * u is BIBO stable.

On the other hand, suppose T'(8) = ¢. Any attempt to decide the value [ |T(8)| by
intuitive means would be perilous at best. Using our theory, this case is easily handled by
simply noting that 7(0) = ¢ & BV,.

Another characterization of stable linear time-invariant systems can be obtained by ex-
amining the set H of Fourier transforms of functions in L!. It follows from [5, p. 189] that

tha Tatiriar tranafnerm of anv b o Tl avicie ig o fnetinn and ic siven hy
Ui rOUricr transyorin Or any 71 € L, €XIStS, 1S a 1UiiClion, anda is given oy

o0
(8) H(w) = / e~ ds (1),
—0Q
where s € BV and s = h. We refer to H as the set of BIBO stable transfer functions. Clearly,
a rational function belongs to H iff it is BIBO stable in the usual sense.

According to Theorem 4.2, the stable transfer functions are generated by letting s vary
over BV in (8). Since every function in BV can be written as the difference of two bounded
nondecreasing functions, a substantial number of existing results in analysis come into play.
For example, working from [13, Ch. VI], we find that all functions in 7 are bounded and
uniformly continuous. Several complete, albeit abstruse, characterizations of 7 are available,
perhaps the simplest following from Bochner’s theorem: A function H belongs to ‘H iff H is
the difference of two continuous positive semidefinite functions. (See [13, p. 137].)

The Laplace transform

oo
H(z) = f e~ ds(t)
-0
of h = § € L}, also exists and is analytic on Re z > 0. It is easy to show that the “boundary
function”

w— Iirr%)H(cr + iw)
is well defined and equals the Fourier transform (8). In fact, if supp & C [z, o0),
[H(2)] < e ¥ Var(s)

for all right half-plane z. In particular, if » € L}, with r > 0, then H belongs to the Hardy
space H*(C™"). The converse implication fails, however, since the function

HGz) =e ¢

belongs to H*, but H ({w) is not continuous at w = 0 and therefore H is not stable. Sufficient
conditions on H(z) for stability (other than those on the boundary function) are difficult to
obtain. Even analyticity on the whole plane is not sufficient (e.g., let i = §).

Our final comment of this section addresses the issue of linear systems with multiple
inputs and outputs. In this case, T(8) and its Fourier transform are matrices. Extending the
definition of BIBO stability in the obvious way, it is clear that stability simply corresponds to
each entry of the matrix being stable in the sense described above.

6. Conclusions. We presented a coherent distributional theory for linear time-invrariant
systems based on the concept of impulse response. The property of BIBO stability was shown
to be equivalent to a simple condition on either the impulse or step response of the system.
We also supplied a somewhat more difficult stability condition related to the system transfer
function. The time-varying case is at present under investigation.
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