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Abstract

We consider linear, time-invariant state-space systems under high-gain state feedback. The analysis is couched
in terms of singular system theory and Grassman manifolds. Our work is distinguished from that of other authors
by the fact that we do not allow a gain-dependent state coordinate change. Simple necessary and sufficient
conditions are proven under which a singular system is a high-gain limit of a given state-space system. It is shown
that the feedback matrix achieves a limit on an appropriate Grassmanian, so infinite gains constitute well-defined
mathematical objects. The special cases of minimum-order stable and zeroth-order limits are studied in depth,
including an analysis of solution behavior. Finally, the classical "cheap control" problem is interpreted within the
context of our results.

1 Introduction
Consider the linear, time-invariant state-space system

ẋ = Ax+Bu, (1)

where A ∈ Rn×n and B ∈ Rn×m. For any K ∈ Rm×n, we may apply state feedback

u = −Kx+ v, (2)

yielding the closed loop system
ẋ = (A−BK)x+Bv. (3)

In this paper, we are interested in the “high-gain limits” of (3) as kKk → ∞. We seek a characterization of all
such limits for a given system (1). In addition, we will specialize our results to certain important classes of limits,
and develop conditions under which a limit of (2) constitutes a well-defined system in its own right. We will then
apply our results to the classical “cheap control” problem.
Numerous references deal with the issue of high gain limits under state feedback. For example, early papers such

as [1] treat high gain in a classical singular perturbation context. Much of this work can be viewed largely as a
special case of our results. The details will be provided in Sections 4-6.
More recent efforts, such as [2], [3], and [4], study high gain limits in great depth. However, this body of work is

fundamentally different from ours in that a K-dependent coordinate change is allowed, while our approach admits no
coordinate change. The consequences of the two approaches are strikingly different. Indeed, consider the 1st-order
system

.
x = u
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with feedback
u = −kx+ v.

Our analysis (and that of [1]) dictates that the closed-loop system be written

−1
k

.
x = x− 1

k
v,

yielding x = 0 in the limit. Note that controllability is progressively weakened as k increases, and lost entirely for
k = ∞. This is precisely the effect one would observe in practice, with the variable x representing the fixed (i.e.
K-independent) state of the plant.
On the other hand, the analyses in [2], [3], and [4] allow a K-dependent coordinate change. In this case, the kth

closed-loop system becomes
pkqk

.
z = −pkkqkz + pkv,

where x = qkz, and pk, qk are arbitrary nonzero sequences. For any g 6= 0, setting

pk = 1, qk =
1

kg

yields the controllable limit z = gv. The problem here is that the loss of controllability is masked by the coordinate
change z = kgx, which scales the physical state x progressively higher as k →∞.
Another phenomenon that can occur with a k-dependent coordinate change is illustrated by the example

.
x =

·
0 1
0 0

¸
x+

·
0
1

¸
u, (4)

u = − £ k2 1
¤
x.

Let x = Qkz and premultiply (4) by Pk, where Pk, Qk are nonsingular. Then

PkQk
.
z = Pk

·
0 1
−k2 −1

¸
Qkz, (5)

which is equivalent to a system of the form
Xk

.
z = z (6)

If Qk = I,

Xk =

· − 1
k2 − 1

k2

1 0

¸
→
·
0 0
1 0

¸
, (7)

irrespective of Pk. On the other hand, setting Pk = I and

Qk =

·
1
k 0
0 1

¸
yields

Xk =

· − 1
k2 − 1

k
1
k 0

¸
→ 0. (8)

Substituting (7) and (8) into (6) produces vastly different results. In particular, (7) produces impulses, while (8) does
not. (See [9], Ch. 22.) Losing track of the impulsive behavior in (6),(8) is again due to the progressive redefinition
of the state.
Our approach disallows coordinate changes of the state x. A moment’s reflection indicates that, in our setting,

the high-gain limits of (3) form a subset of those in [2], [3], and [4]. Nevertheless, characterization of these "fixed
coordinate" limits requires an independent analysis. Although the limits we obtain must satisfy the necessary
conditions proven in ([2]) and ([3]), we will establish alternative conditions, which are arguably simpler and both
necessary and sufficient. We will also conduct a careful analysis of stable and "zeroth order" limits, which have
heretofore not been explicitly studied in the literature, at least at this level of generality.
One of our objectives is to establish results which are dual to those we developed for observers in [6]. To this

end, much of our work relies on the theory of differentiable manifolds. (See e.g. [10].)
Throughout the paper, we assume for convenience that rankB = m. For a system where this is not the case, an

input coordinate change bu = Tu can be used to reduce the problem to our framework.
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2 Preliminaries
Before we can talk about the limits of (1), we need some elementary results from singular system theory. Consider
the matrix differential equation

Eẋ = Fx+Gu, (9)

where E,F ∈ Rn×n and G ∈ Rn×m. We assume the matrix pencil (E,F ) is regular — i.e.

∆(s) = |sE − F | 6≡ 0.

The roots of∆ are the eigenvalues of the system. Consider the Stiefel manifold Vn
¡
Rn×(2n+m)

¢
of all

£
E F G

¤ ∈
Rn×(2n+m) with full rank. Also, let

Σ (n,m) =

½£
E F G

¤
∆ 6≡ 0

¾
.

Since ∆ 6≡ 0 implies £ E F
¤
has full rank, Σ (n,m) ⊂ Vn

¡
Rn×(2n+m)

¢
. Both Σ (n,m) and Vn

¡
Rn×(2n+m)

¢
are

complementary to algebraic varieties in Rn×(2n+m) and are, therefore, open and dense in Rn×(2n+m).
Since premultiplication of (9) by a nonsingular matrix M does not affect the dynamics of (9), it is natural to

identify systems (9) related by such a transformation. On the other hand, right multiplication of E and A amounts
to a coordinate change, so we avoid such transformations, retaining the coordinate-dependent nature of conventional
state-space theory. We claim that this approach leads to a simpler theory overall.
With these ideas in mind, we couch our problem in terms the Grassman manifold Gn

¡
R2n+m

¢
. A Grassmanian

is obtained by applying the equivalence relation£
E1 F1 G1

¤ ≈ £ E2 F2 G2
¤ ⇐⇒ ∃ nonsingular M 3 £ E1 F1 G1

¤
=M

£
E2 F2 G2

¤
(10)

to Vn
¡
Rn×(2n+m)

¢
and forming the quotient manifold Gn

¡
R2n+m

¢
with dimension n (n+m) . Charts on Gn

¡
R2n+m

¢
may be constructed by setting n columns of

£
E F G

¤
to the n× n identity matrix and varying the remaining

entries. Doing this in all
µ
2n+m

n

¶
ways generates an atlas for Gn

¡
R2n+m

¢
. We denote points in Gn

¡
R2n+m

¢
by

[E,F,G] . Setting

L(n,m) =
½
[E,F,G] ∈ Gn

¡
R2n+m

¢
∆ 6≡ 0

¾
is consistent with the quotient structure of Gn

¡
R2n+m

¢
, since premultiplication of

£
E F G

¤
by a nonsingularM

scales ∆ by a nonzero constant. Let µ : Vn
¡
R2n+m

¢→ Gn
¡
R2n+m

¢
be the submersion defined by

£
E F G

¤→
[E,F,G] . Then µ is continuous and open ([10], Proposition 6.1.5). Hence, L(n,m) = µ (Σ (n,m)) is an open, dense
submanifold of Gn

¡
R2n+m

¢
. This makes L(n,m) an analytic manifold of dimension n (n+m) . We studied L(n,m)

in [5].
We will make frequent use of the Weierstrass Decomposition ([8], pp. 24-28): For any regular pencil (E,F ), there

exists nonsingular M,N such that

MEN =

·
I 0
0 Ef

¸
MFN =

·
Fs 0
0 I

¸
, (11)

where Ef is nilpotent. Ef and Fs are unique up to similarity. Define the order of (E,F ) to be ord (E,F ) = deg∆
(i.e. the dimension of Fs) and the index ind (E,F ) to be the smallest integer q ≥ 1 such that Eq

f = 0. The functions
ord and ind are uniquely defined on Σ (n,m) . In fact, both are invariant under the equivalence (10), so we may apply
them to points in L(n,m) :

ord [E,F,G] = ord (E,F ) ,

ind [E,F,G] = ind (E,F ) .

Eigenvalues are also invariant over orbits in Vn
¡
Rn×(2n+m)

¢
, so we may refer to a point [E,F,G] as being stable, if

all its eigenvalues λ satisfy Reλ < 0 and ind [E,F,G] = 1.
We will need to consider solutions of (9). To this end, we review some basic facts from the theory of distributions.

(See e.g. [11]). Let D be the space of C∞ functions φ : R → R with bounded support, and let D0 denote the dual
space of D. A distribution f is any member of D0. Each locally L1 function f (i.e. L1 on bounded intervals) may
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be considered a distribution, since it determines a functional φ → R
fφ. The unit impulse δ is defined to be the

evaluation functional < δ, φ >= φ(0). Every distribution has a derivative defined by < ḟ, φ >= − < f, φ̇ >; thus
< δ(i), φ >= (−1)iφ(i)(0). A sequence of distributions fk is said to converge weak * to f if hfk, φi→ hf, φi for every
φ ∈ D. One advantage of working with distributions is that differentiation is a weak*-continuous operation. Besides
weak* convergence, we will sometimes refer to uniform convergence fk → f on an interval in I ⊂ R. This simply
means that there exist locally L1 functions gk, g defined on I such that < fk, φ >=< gk, φ >,< f, φ >=< g, φ >
for all φ with support in I and gk → g uniformly. Let U ⊂ R be the largest open set such that suppφ ⊂ U implies
< f, φ >= 0. The support of f is supp f = Uc. Let D0+ be the distributions with support in [0,∞).
In order to apply arbitrary initial conditions x0 to (9), it is convenient to consider the augmented system

Eẋ = Fx+Gu+ δEx0, (12)

which yields a unique solution x ∈ D0+. (See [9], Ch.22 for details.). Let·
Gs

Gf

¸
=MG,

·
xs
xf

¸
= N−1x,

·
x0s
x0f

¸
= N−1x0 (13)

and exp (Fs) : R→ Rdeg∆×deg∆ be given by

exp(Fs)t =

½
etFs , t ≥ 0
0, t < 0

.

Define the state-transition matrix

Φ = N

 exp(Fs) 0

0 −
q−1P
i=0

δ(i)Ei
f

M. (14)

Direct calculation shows that Φ is the inverse Laplace transform of (sE −A)−1 , so Φ may be viewed as a map on
Σ(n, 0), obviously 1− 1. Since Φ is 1− 1, it varies over each orbit in Σ(n, 0), so Φ cannot be defined consistently on
L(n, 0). Φ may be extended trivially to Σ(n,m), with similar consequences. The state transition matrix relates to
the system (12) as follows:

Theorem 1 1) E
.
Φ = AΦ+ δI

2) The solution of (12) is x = ΦEx0 +Φ ∗Gu.
3) The system (12) is asymptotically stable iff ΦE is bounded and decays asymptotically to 0.
Proof. 1) and 2) follow by direct calculation.
3) By asymptotic stability, we mean that, for u ≡ 0, we have the conditions a) x (t)→ 0 as t→∞,for every x0,

and b) supt |x (t)|→ 0 as x0 → 0. Boundedness and decay of ΦE are equivalent to the eigenvalues λ of Fs satisfying
Reλ < 0 and Ef = 0.
(Sufficient) From (11) and (14),

ΦE = N

·
exp (Fs) 0

0 0

¸
N−1,

so conditions a) and b) are met relative to ΦEx0.
(Necessary) We have Φ (t)Ex0 → 0 for every x0, so

ΦE = N

 exp (Fs) 0

0 −
q−1P
i=0

δ(i)Ei+1
f

N−1 → 0,

which implies Fs is stable. Furthermore, ΦEx0 is bounded for every x0, so ΦE is bounded, which implies it contains
no impulses — i.e. Ef = 0.

3 The Manifold of Closed-Loop Systems
The present paper closely follows the development of [6], where the dual problem of the limiting behavior of state
observers under high gain feedback was studied. One might speculate that the state feedback case should be obtained
from [6] merely be taking the “transpose” of all theorems. While some theorems do transfer over in this way, much of
the state feedback theory is different. One way to see that this must be true is to observe that, in both cases, systems
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are identified when they are related by left multiplication by a nonsingular M. In contrast, pure transposition of the
observer problem would require right multiplication by M, leading to a K-dependent coordinate change, which we
explicitly avoid.
The closed-loop systems (3) for a given plant (1) imbed naturally into L(n,m) via the map K → [I,A−BK,B].

We denote the image of Rm×n under this map by Cr. We further denote the closure of Cr in L(n,m) by C and
consider the set Cs = C - Cr. C may be regarded as the set all limits of (3), Cr the full-order limits (i.e. ordinary
state space systems) and Cs the singular limits (i.e. generalized state space systems). Another way to define C, Cr,
and Cs is via the submersion µ. Let

Ωr =

½£
M M (A−BK) MB

¤
M nonsingular

¾
.

Obviously, Ωr ⊂ Σ(n,m). Let Ω be the closure of Ωr in Σ(n,m), and Ωs = Ω− Ωr. It is easy to see that C = µ (Ω) ,
Cr = µ (Ωr) , and Cs = µ (Ωs) .
We need the following lemma to prove Theorem 3, which establishes the basic structure of C.

Lemma 2 Let X,Y ∈ Rn×n with rank £ X Y
¤
= n. There exist Kk ∈ Rm×n and nonsingular Xk ∈ Rn×n such

that Xk → X and XkBKk → Y iff rank
£
XB Y

¤
= m.

Proof. (Necessary) For large k,

rank
£
XB Y

¤ ≤ rank £ XkB XkBKk

¤
= rank

£
B BKk

¤
= m.

Suppose
rank

£
XB Y

¤
< m,

and let R ⊂ Rn be a subspace such that
ImB ⊕R = Rn.

Then dimR = n−m, and

rank
£
X Y

¤
= dim (ImX + ImY )

= dim (XR+ ImXB + ImY )

≤ dimXR+ dim (ImXB + ImY )

≤ dimR+ rank
£
XB Y

¤
< n.

From this contradiction, we conclude
rank

£
XB Y

¤
= m.

(Sufficient) Let

R = ImXB ∩ ImY,

S = KerX ∩ ImB,

p = dimR, and q = dimS. Then
m = q + rankXB,

and there exists a nonsingular T ∈ Rn×n such that

Y T =
£
Y1 Y2

¤
with ImY1 = R and

ImXB ∩ ImY2 = 0.

Hence, we may select H ∈ Rm×p such that XBH = Y1. Also,

rankXB + rankY2 = rank
£
XB Y2

¤ ≤ rank £ XB Y
¤
= m,

so
rankY2 ≤ q.
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We may choose J ∈ Rm×q such that ImBJ = S. Then XBJ = 0, and

rankBJ = q ≥ rankY2.
Thus there exists Z ∈ Rn×n such that ZBJ = Y2.
Let Zk = X + 1

kZ and, for each k, select nonsingular Zkj → Zk as j → ∞. We may select a sequence jk ↑ ∞
such that

kZkjk − Zkk < 1

k2

for every k. Setting Xk = Zkjk , we have

kXk −Xk ≤ kXk − Zkk+ kZk −Xk = 1

k2
+
1

k
kZk ,

so Xk → X. Let Kk =
£
H kJ

¤
T−1. Then

XkBKk =
£
XkBH k (Xk − Zk)BJ + kZkBJ

¤
T−1

=
£
XkBH k (Zkjk − Zk)BJ + kXBJ + ZBJ

¤
T−1

→ £
Y1 Y2

¤
T−1

= Y.

Theorem 3 1) C = {[X,XA− Y,XB] ∈ L(n,m) rank
£
XB Y

¤
= m}

2) C is a regular submanifold of L(n,m) with dimension nm.
3) Cr is a (relatively) open, dense submanifold of C
4) [X,XA− Y,XB] ∈ Cs iff rank

£
XB Y

¤
= m with X singular.

Proof. 1) Let

Ωe =

½£
X XA− Y XB

¤ ∈ Vn ¡R2n+m¢ rank
£
XB Y

¤
= m

¾
.

Setting X =M and Y =MBK yields£
X XA− Y XB

¤
=
£
M M (A−BK) MB

¤
,

rank
£
XB Y

¤
= rank

£
MB MBK

¤
= rank

£
B BK

¤
= m,

so Ωr ⊂ Ωe ∩Σ (n,m) . It suffices to show that the closure of Ωr in Vn
¡
R2n+m

¢
is Ωe, because then the closure of Ωr

in Σ (n,m) is Ω = Ωe ∩ Σ (n,m) , and part 1) follows from µ (Ωr) = Cr, µ (Ω) = C.
For any nonsingular T ∈ Rn×n, let

LT =

·
T−1 T−1A T−1B
0 −I 0

¸
.

Choose X,Y such that £
X Y

¤
LI =

£
X XA− Y XB

¤ ∈ Ωe.
LT has independent rows, so rank

£
X Y

¤
= n. From Lemma 2, there exist sequences Xk and Kk, with Xk

nonsingular, such that Xk → X and XkBKk → Y. Hence,£
Xk Xk (A−BKk) XkB

¤→ £
X XA− Y XB

¤
,

and the closure of Ωr contains Ωe. Conversely, if£
Xk Xk (A−BKk) XkB

¤→ £
X F G

¤ ∈ Vn ¡R2n+m¢ ,
then Xk → X and G = XB. Let Y = XA− F. Then

rank
£
X Y

¤
= rank

£
X Y

¤ · I A
0 −I

¸
= rank

£
X F

¤
= rank

£
X F G

¤
= n,
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XkBKk = XkA−Xk (A−BKk)→ Y,

so, from Lemma 2,
rank

£
XB Y

¤
= m.

Hence,
£
X F G

¤ ∈ Ωe, and Ωe contains the closure of Ωr.
2) This part of the proof will be based on the following construction. Choose a nonsingular T such that

T−1B =

·
0
I

¸
,

and consider the diagram bh bg
Vm (Rm+n) → Vn

¡
R2n

¢ → Vn
¡
R2n+m

¢
↓ π ↓ ν ↓ µ

Gm (Rm+n) → Gn
¡
R2n

¢ → Gn
¡
R2n+m

¢
h g

where

bg ³h eX Y
i´
=
h eX Y

i
LT ,

bh (Z) = · I 0
0 Z

¸
,

and µ, ν, and π are the standard submersions. We note that

bg ³M h eX Y
i´
=Mbg ³h eX Y

i´
,

and bh (NZ) =

·
I 0
0 N

¸bh (Z)
for any nonsingular M,N, so g and h may be defined to make the diagram commute. We are mainly interested in
the compositions f = g ◦ h and bf = bg ◦ bh. Note that bg, bh, and hence bf are 1− 1 Furthermore, if

bg ³h eXa Ya

i´
=Mbg ³h eX Y

i´
,

we obtain bg ³h eXa Ya

i´
= bg ³M h eX Y

i´
,

so h eXa Ya

i
=M

h eX Y
i

and g is 1− 1. Now suppose bh (Za) =Mbh (Z) .
Then ·

I 0
0 Za

¸
=

·
M11 M12

M21 M22

¸ ·
I 0
0 Z

¸
.

Inspection of the block matrix equations yields Za =M22Z with M22 nonsingular, so h and f are 1− 1.
Let Ce = µ (Ωe) . Since L(n,m) is open in Gn

¡
R2n+m

¢
, it suffices to demonstrate that Ce satisfies 2), because

then C = Ce ∩ L(n,m) inherits the same properties. We begin by showing that f (Gm (Rm+n)) = Ce. Consider any
point [X,XA− Y,XB] ∈ Ce. Setting eX = XT and partitioningh eX1

eX2

i
= eX,

with eX1 ∈ Rn×(n−m), eX2 ∈ Rn×m, we obtain

rank
h eX2 Y

i
= rank

h eXT−1B Y
i
= rank

£
XB Y

¤
= m,
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rank
h eX1

eX2 Y
i
= rank

£
XT Y

¤
= rank

£
X Y

¤
= n,

so rank eX1 = n−m. Hence, there exists Z1 ∈ Rm×m, Z2 ∈ Rm×n, and a nonsingular M such that

M
h eX1

eX2 Y
i
=

·
I 0 0
0 Z1 Z2

¸
,

and
rank

£
Z1 Z2

¤
= m.

It follows that
f ([Z1, Z2]) = g

³h eX,Y
i´
= [X,XA− Y,XB] ,

which yields the desired result. In fact, letting functions φ range over an atlas of Gm (Rn+m) ,
©
φ ◦ f−1ª becomes an

atlas for Ce, making f an analytic diffeomorphism between Gm (Rn+m) and Ce.
As a map into Gn

¡
R2n+m

¢
, we can prove that f is analytic by showing that g and h are analytic. Let ξ ∈ Gn

¡
R2n

¢
,

and choose charts φ on Gn
¡
R2n

¢
and ψ ∈ Gn

¡
R2n+m

¢
such that ξ and g (ξ) lie in the domains of φ and ψ, respectively.

Then ψ ◦ g ◦ φ−1 is a rational function, where the denominator has no zero, and is thus analytic. Since φ, ψ are
arbitrary, g is analytic. Analyticity of h is proved similarly.
To show that Ce is a submanifold of Gn

¡
R2n+m

¢
, we must also prove that f has full rank. We need to show that

the derived linear function f∗ at each point of Gm (Rn+m) is 1− 1. From [10], Proposition 4.3.1, f∗ = g∗ ◦ h∗, so it
suffices to prove that g∗ and h∗ are 1− 1. Since g ◦ ν = µ ◦ bg, the same theorem guarantees

g∗ ◦ ν∗ = µ∗ ◦ bg∗.
Since bg is 1− 1 and µ∗, ν∗ are onto,

rank g∗ = rank (µ∗ ◦ bg∗) ≥ rank bg∗ − ¡dimVn ¡R2n+m¢− rankµ∗¢ = 2n2 − (n (2n+m)− n (n+m)) = n2,

so g∗ is 1 − 1. Unfortunately, this calculation does not work for h∗. To prove h∗ is 1 − 1, consider any point
ξ ∈ Gm (Rn+m) and a chart φ whose coordinate domain contains ξ. Applying φ amounts to choosing m columns {ci}
of
£
Z1 Z2

¤
, setting them equal to the m×m identity matrix, and allowing the remaining entries to vary, forming

an m×n matrix eZ. In a neighborhood of h (ξ) , each point of Gn ¡R2n¢ may be represented as · I
0

S1
S2

¸
, where the

columns {ci} of
·
S1
S2

¸
are

·
0
I

¸
. This generates a chart ψ of Gn

¡
R2n

¢
, whose coordinate domain contains h (ξ) .

It is easy to see that

ψ
³
h
³
φ−1

³ eZ´´´ = · 0eZ
¸
.

From [10], p.58, h∗ has matrix representation
∂(ψ◦h◦φ−1)

∂Z
. But ψ ◦ h ◦ φ−1 is linear, so

h∗
³ eZ´ = · 0eZ

¸
,

which is 1− 1. Hence, we conclude that Ce is an nm-dimensional submanifold of Gn
¡
R2n+m

¢
.

Finally we prove regularity of Ce.We need to show that the topologies that Ce inherits from Gm (Rm+n) (through
f) and from Gn

¡
R2n+m

¢
(as a subset) coincide. Since f is analytic, it is continuous, and f−1 (W ∩ f (Gm (Rm+n))) =

f−1 (W ) is open in Gm (Rm+n) for every open W ⊂ Gn
¡
R2n+m

¢
. To prove the converse, let U ⊂ Gm (Rm+n) be

open. Then π−1 (U) is open. For any Z ∈ π−1 (U) there exists ε > 0 such that the ball B (Z, ε) ⊂ π−1 (U) . Then
NB (Z, ε) ⊂ π−1 (U) for every nonsingular N. Let

eL =
 T A
0 −I
0 0

 ,
and define

WZ =

M−1B

 bf (Z) , ε

2
°°°eL°°°

 M nonsingular

 = µ−1

µ

B

 bf (Z) , ε

2
°°°eL°°°

 ,
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W =
[

Z∈π−1(U)
WZ .

Since µ is open, each WZ and, therefore, W are open. It suffices to show that

bf ¡π−1 (U)¢ =W ∩ bf ¡Vm ¡Rm+n¢¢ . (15)

Indeed, since W is a union of orbits in Vn
¡
R2n+m

¢
, µ (W ∩A) = µ (W )∩µ (A) for any A,.from which it follows that

f (U) = µ
³ bf ¡π−1 (U)¢´

= µ
³
W ∩ bf ¡Vm ¡Rm+n¢¢´

= µ (W ) ∩ µ
³ bf ¡Vm ¡Rm+n¢¢´

= µ (W ) ∩ Ce,
so f (U) is (relatively) open in Ce.
To prove (15), first note that Z ∈ π−1 (U) implies bf (Z) ∈WZ , so

bf ¡π−1 (U)¢ ⊂W ∩ bf ¡Vm ¡Rm+n¢¢ .
Conversely, suppose Za ∈ Vm (Rm+n) , ∆ ∈ B

µ
0, ε

2kLk
¶
, and nonsingular M satisfy

M−1
³ bf (Z) +∆´ = bf (Za) .

Then °°°M bf (Za)− bf (Z)°°° < ε

2
°°°eL°°° .

But

M bf (Za)− bf (Z) = µM ·
I 0
0 Za

¸
−
·
I 0
0 Z

¸¶
LT

and LT eL = I, so °°°°M ·
I 0
0 Za

¸
−
·
I 0
0 Z

¸°°°° ≤ °°°M bf (Za)− bf (Z)°°°°°°eL°°° < ε

2
.

Partitioning M, we obtain
kM22Za − Zk < ε

2

(assuming an appropriate norm). Let N be a nonsingular matrix such that°°N−1 −M22

°° < ε

2 kZak .

Then °°N−1Za − Z
°° ≤ °°N−1 −M22

°° kZak+ kM22Za − Zk < ε,

so Za ∈ NB (Z, ε) . Hence,

bf ¡π−1 (U)¢ ⊃M−1B

 bf (Z) , ε

2
°°°eL°°°

 ∩ bf ¡Vm ¡Rm+n¢¢
for every nonsingular M,.and bf ¡π−1 (U)¢ ⊃W ∩ bf ¡Vm ¡Rm+n¢¢ .
3) Density of Cr follows from the definition of C. To show Cr is open in C, it suffices to show that Ωr is open in Ω.

Let σ ∈ Ωr and σk ∈ Ω with σk → σ. Then there exist M,Xk, Yk ∈ Rn×n and K ∈ Rm×n, with M nonsingular and

rank
£
XkB Yk

¤
= m,

9



such that

σ =
£
M M (A−BK) MB

¤
,

σk =
£
Xk XkA− Yk XkB

¤
.

Since σk → σ, Xk →M, so Xk is nonsingular for large k and

rank
£
B X−1k Yk

¤
= m.

Then ImX−1k Yk ⊂ ImB, so there exists Kk ∈ Rm×n such that X−1k Yk = BKk. Therefore,

σk =
£
Xk Xk (A−BKk) XkB

¤ ∈ Ωr,
and Ωr is open in Ω.
4) (Sufficient) This follows from the definition of Ωs and Cs = µ (Ωs) .
(Necessary) Assume X is nonsingular. From part 1),

rank
£
B X−1Y

¤
= rank

£
XB Y

¤
= m,

so, ImX−1Y ⊂ ImB, and there exists K ∈ Rm×n such that X−1Y = BK. It follows that

[X,XA− Y,XB] = [X,X (A−BK) ,XB] ∈ Cr,

which is a contradiction.
Theorem 3, part 4), characterizes all degenerate closed-loop systems Cs. This corresponds to applying a sequence

of feedback matrices Kk such that kKkk → ∞, driving some or all eigenvalues to ∞ in magnitude. Since Cs is
obtained with no state coordinate change, Cs must be a subset of the high-gain limits considered in [2] and [3]. In
particular, each point in Cs must satisfy the necessary conditions established in [2], Theorem 1 and [3], Corollary 4.3.
Compared with these results, our characterization of Cs has a very different form, is necessary and sufficient, and is
arguably simpler.

4 Stable and Zeroth Order Limits
In this section, we study certain subsets of C which have special significance. In particular, we examine those systems
in C which are stable (i.e. all eigenvalues satisfy Reλ < 0) and those with order 0. We begin with a discussion of an
important submanifold of C, which will help simplify the development. Let

CI = {[X, I,XB] ∈ C} .

CI is simply the set of points in C with no eigenvalue at 0. Each point in CI corresponds to a system

X
.
x = x+XBv + δXx0 (16)

with state transition matrix determined by
X

.
Φ = Φ+ δI.

From Theorem 3, part 1), we obtain

CI =
½
[X, I,XB] ∈ Gn

¡
R2n+m

¢
rank

£
XB XA− I

¤
= m

¾
.

The next result gives several alternative characterizations of CI .

Theorem 4 For any X ∈ Rn×n, the following are equivalent:
1) rank

£
XB XA− I

¤
= m

2) Ker
£
X I

¤ ⊂ Im · B A
0 −I

¸
3) Im (AX − I) ⊂ ImB
4) There exists U ∈ Rm×n such that AX +BU = I.

10



Proof. (1⇐⇒ 2) From elementary linear algebra,

rank
£
XB XA− I

¤
= rank

£
X I

¤ · B A
0 −I

¸
(17)

≥ rank
·
B A
0 −I

¸
− ¡2n− rank £ X I

¤¢
= (n+m)− (2n− n)

= m

with equality iff

Ker
£
X I

¤ ⊂ Im · B A
0 −I

¸
.

(2⇐⇒ 3) Condition 2) is equivalent to saying that, for each x, there exist y, z such that·
B A
0 −I

¸ ·
y
z

¸
=

· −x
Xx

¸
. (18)

Writing out the equations, (18) is the same as By = (AX − I)x, which is a restatement of 3).
(3⇐⇒ 4) Condition 3) says that there exists U such that AX − I = −BU, which is the same as 4).
Theorem 4, part 4) indicates that CI is nonempty iff

£
A B

¤
has full rank — i.e. iff 0 is a controllable mode of

(1). In this case, the affine set

W =

½·
X
U

¸
∈ R2n×n AX +BU = I

¾
will prove central to our theory. The next result gives a precise relationship between CI and W.

Theorem 5 1) [X, I,XB] ∈ CI iff there exists U ∈ Rm×n such that
·
X
U

¸
∈W. In this case, U is unique.

2) Let Kk ∈ Rm×n. Then [I,A−BKk, B]→ [X, I,XB] ∈ CI as k →∞ iff A−BKk is nonsingular for large k and
(A−BKk)

−1 → X. In this case, −Kk (A−BKk)
−1 → U.

3) CI is a (relatively) open, dense submanifold of C, diffeomorphic to W.
Proof. 1) All but uniqueness is a restatement of Theorem 4, part 4). Uniqueness follows from BU = I − AX

and rankB = m.
2) If (A−BKk)

−1 → X,

[I,A−BKk, B] =
h
(A−BKk)

−1 , I, (A−BKk)
−1B

i
→ [X, I,XB] . (19)

To prove the converse, we note that µ is a submersion, so there exist nonsingular Mk such that

Mk

£
I A−BKk B

¤→ £
X I XB

¤
.

Hence, Mk → X and Mk (A−BKk)→ I, so A−BKk is nonsingular for large k, and

(A−BKk)
−1 = (Mk (A−BKk))

−1Mk → X.

If [X, I,XB] ∈ CI , part 1) indicates that there exists a unique U such that AX +BU = I. Then

BKk (A−BKk)
−1
= A (A−BKk)

−1 − I → AX − I = −BU,

Kk (A−BKk)
−1 → −U.

3) Consider the open, dense subset

ΩI =

½£
X Y

¤
LI ∈ Vn

¡
R2n+m

¢
rank

£
XB Y

¤
= m, det (AX − Y ) 6= 0

¾
of Ω. Since µ is a submersion, CI = µ (ΩI) is open and dense in C. The map

f :

·
X
U

¸
→ [X, I,XB]

11



takes W onto CI , by 1). Since U is uniquely determined by X, f is 1 − 1. Both W and CI are covered by single
coordinate domains. One may construct an affine chart φ for W and apply the chart

ψ : [X, I,XB]→ X

to CI . Then ψ ◦ f ◦ φ−1 is an affine diffeomorphism, so f is a diffeomorphism.
Since closed-loop systems in CI (or, alternatively, W) have no eigenvalue at 0, CI contains all stable limits and

all zeroth order limits. The structure of W is dual to the structure of the manifold V we studied in [5].
Restricting to CI yields a surprising result related to controllability of the closed-loop system (16).

Theorem 6 Let [X, I,XB] ∈ CI . Then rankX ≥ n−m with equality iff XB = 0.

Proof.
£
A B

¤
has full rank, so we may choose nonsingular M,N such that

MB =

·
0
I

¸
, MAN =

·
I 0eA21 eA22

¸
. (20)

Let " eX11
eX12eX21
eX22

#
= N−1XM−1,

h eU1 eU2 i = UM−1.

Then " eX11
eX12

A21 eX11 +A22 eX21 + eU1 A21 eX12 +A22 eX22 + eU2
#
=M (AX +BU)M−1 = I,

so X and XB have the form

X = N

·
I 0

X21 X22

¸
M, XB = N

·
0

X22

¸
.

Hence, rankX ≥ n−m with equality iff X22 = 0.
Theorem 6 states that high gain limits of (3) where the rank of X degenerates maximally have the unfortunate

property that the input v exerts no control whatsoever on the system. This is undoubtedly a limitation for control
problems where closed-loop tracking to a reference input is required.
Now we consider the special cases of minimum-order stable and zeroth order limits. By applying essentially the

same arguments as in [5], several results are obtained immediately. These are summarized in Theorems 7 and 8. The
first is based on the following construction. Choose any nonsingular matrix T such that

T−1B =

·
0
I

¸
, (21)

and let " eA11 eA12eA21 eA22
#
= T−1AT, (22)

where eA22 ∈ Rm×m. If (A,B) is stabilizable,
rank

"
λI − eA11 − eA12 0

− eA21 λI − eA22 I

#
= n

for every λ with Reλ ≥ 0. Hence, rank
h
λI − eA11 eA12 i = n−m (i.e.

³ eA11, eA12´ is stabilizable). We may thus
choose Λ such that eA11 − eA12Λ is stable, and set

X = T


³ eA11 − eA12Λ´−1 0

−Λ
³ eA11 − eA12Λ´−1 0

T−1, (23)

U =

·
−
³ eA21 − eA22Λ´³ eA11 − eA12Λ´−1 I

¸
T−1. (24)

12



By direct calculation, AX+BU = I, so
·
X
U

¸
∈W and ξ = [X, I, 0] ∈ CI . Note that ind ξ = 1 and

³ eA11 − eA12Λ´−1
is stable, so ξ is stable. From Theorem 1, part 1), the state transition matrix is

Φ = T

 ³ eA11 − eA12Λ´ exp³ eA11 − eA12Λ´ 0

−Λ
³³ eA11 − eA12Λ´ exp³ eA11 − eA12Λ´+ δI

´
−δI

T−1, (25)

so

ΦX = T

 exp
³ eA11 − eA12Λ´ 0

−Λ exp
³ eA11 − eA12Λ´ 0

T−1. (26)

Letting · ex01ex02
¸
= T−1x0,

we obtain the solution of (16):

x = T

·
I
−Λ

¸
exp

³ eA11 − eA12Λ´ ex01.
Theorem 7 1) Cs contains a stable point iff (A,B) is stabilizable.
2) If ξ ∈ Cs is stable, then ord ξ ≥ n−m with equality iff ξ = [X, I, 0] , where X has the structure (23).

Proof. See [6], Theorems 4.2 and 4.3.
We are also interested in the zeroth order closed-loop limits

C0 =
½
ξ ∈ C ord ξ = 0

¾
.

C0 corresponds precisely to those ξ = [X, I,XB] ∈ CI withX nilpotent. From Theorem 1, part 1), the state transition
matrix is

Φ = −
q−1X
i=0

δ(i)Xi, (27)

so the solution of (16) is

x = ΦXx0 +Φ ∗ v = −
n−1X
i=0

Xi+1Bv(i) −
n−1X
i=1

δ(i−1)Xix0.

The system corresponds to successive differentiation of the input v plus a “noise” term.

Theorem 8 1) C0 is nonempty iff (A,B) is controllable.
2) If (A,B) is controllable and m = 1, C0 is a singleton.
3) If (A,B) is controllable, m = 1, ξk ∈ Cr, and all eigenvalues λik of ξk satisfy |λik|→∞, then ξk converges to the
unique point in C0.
4) If (A,B) is controllable and m > 1, C0 is uncountable and unbounded (as a subset of W).
5) Every ξ ∈ C0 satisfies ind ξ ≥ n

m .

Proof. See [6], Theorems 5.1-5.3.
Next, we consider Cr approximations [I,A−BKk, B] to certain points in Cs. This is important in applications,

since points with singular X can only be achieved as limits as kKkk → ∞ in (3). In view of (12), the closed-loop
system (3) can be written equivalently as

(A−BKk)
−1 .

x = x+ (A−BKk)
−1Bv + δ (A−BKk)

−1 x0, (28)

yielding state transition matrix
Φk = (A−BKk) exp (A−BKk) (29)

and solution
xk = Φk (A−BKk)

−1 x0 +Φk ∗Bv. (30)

We are interested in finding a sequence {Kk} that yields not only convergence of [I,A−BKk, B] in C, but also the
strongest possible convergence of the forced and natural response in (30).
We begin by consider stable systems.

13



Theorem 9 Let ξ ∈ Cs be stable with ord ξ = n−m, and let

Kk =
h eA21 + kΛ eA22 + kI

i
T−1, (31)

ξk = [I,A−BKk, B] .

Then
1) ξk → ξ,

2) Φk (A−BKk)
−1 is uniformly bounded,

3) Φk → Φ uniformly on [ε,∞) for every ε > 0,
4) Φk → Φ weak*,
where Φ is given by (25).

Proof. 1)-3) See [6], Theorem 6.2.
4) From 2),3), (A−BKk)

−1
Φk → XΦ weak*. Since differentiation is weak* continuous,

Φk = (A−BKk)
−1 .

Φk − δI → X
.

Φ− δI = X.

The results of [1] can be interpreted in terms of Theorems 7 and 9. In [1], the special case

Kµ = − 1
µ
K (32)

is considered, where K is a fixed matrix and µ > 0 is small. Adopting (21) and (22) and settingh eK1
eK2

i
= KT,

it is assumed in [1] (equations (32) and (33)) that eK2 and eA11− eA12 eK−12 eK1 are stable. Under these conditions, (32)
constitutes an alternative to (31). Indeed, define

Γµ = µ eA22 + eK2, ∆µ = eA11 − eA12Γ−1µ ³
µ eA21 + eK1

´
,

and note that Γµ and ∆µ are stable for small µ > 0. Block matrix inversion reveals

X = T

"
∆−1µ −µ∆−1µ eA12Γ−1µ

−Γ−1µ
³
µ eA21 + eK1

´
∆−1µ µ

³
Γ−1µ + Γ−1µ

³
µ eA21 + eK1

´
∆−1µ eA12Γ−1µ ´ #T−1

→ T


³ eA11 − eA12 eK−12 eK1

´−1
0

− eK−12 eK1

³ eA11 − eA12 eK−12 eK1

´−1
0

T−1,
which is the same as (23) with Λ = eK−12 eK1. Although the structures (31) and (32) are slightly different, the methods
of [6], Theorem 6.2 can easily be modified to prove Theorem 9 relative to (32). Note that, in [1], only asymptotic
stability for each µ > 0 is actually proven.
Now consider zeroth order systems ξ ∈ C0. Theorem 8, part 1), guarantees that (A,B) is controllable. From [16],

pp. 342-343, there exist eK ∈ Rm×n, w ∈ Rm such that
³
A−B eK,Bw

´
is controllable with A−B eK nilpotent. Thus

there exists a nonsingular N such that

N−1
³
A−B eK´N =


0 1

. . .
. . .
. . . 1

0

 , N−1Bw =


0
...
0
1

 .
Theorem 10 Let

βik =

µ
n
i

¶
kn−i, bKk =

£
β0k · · · βn−1,k

¤
,
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Kk = eK + w bKkN
−1,

ξk = [I,A−BKk, B] .

Then
1) ξk converges to a point in C0,
2) Φk → Φ uniformly on [ε,∞) for every ε > 0,
3) Φk → Φ weak*,
where Φ is given by (27).

Proof. 1) From Theorem 5, part 2), it suffices to prove that (A−BKk)
−1 → X for some nilpotent X. This

follows by the same arguments as in [6], Theorem 6.3.
2),3) See [6], Theorem 6.3.
Note that, in Theorem 10, boundedness of the natural response matrix Φk (A−BKk)

−1 was dropped. This is a
consequence of the appearance of impulses in Φ when ξ ∈ C0 and X 6= 0. We can, in fact, prove a stronger result,
which demonstrates the disastrous effect of driving the system to a limit with ord ξ < n−m.

Theorem 11 Let m < n, 1 < p ≤ ∞, and ξk ∈ C be stable for all k. If the eigenvalues λik of ξk satisfy maxi {|λik|}→
∞ as k →∞, then kΦkXkkp →∞.

Proof. See [6], Theorem 6.4.

5 The Limiting Compensator
The state feedback law (2) may be written £

I K
¤ · u

x

¸
= v. (33)

This suggests that compensators of the form (2) are naturally identified with points [I,K] in the Grassmanian
Gm (Rm+n) . In the proof of Theorem 3, we considered the maps g : Gn

¡
R2n

¢→ Gn
¡
R2n+m

¢
and h : Gm (Rm+n)→

Gn
¡
R2n

¢
defined by

g
³h eX,Y

i´
=
h eXT−1, eXT−1A− Y, eXT−1B

i
, (34)

h ([Z1, Z2]) =

µ·
I 0
0 Z1

¸
,

·
0
Z2

¸¶
, (35)

where T is given by (21). The composition f = g◦h was shown to be an analytic diffeomorphism between the manifolds
Gm (Rm+n) and Ce = f (Gm (Rm+n)) , with Ce regular in Gn

¡
R2n+m

¢
. Consider the open, dense submanifolds F =

f−1 (C) and Fr = f−1 (Cr) of Gm (Rm+n) , and let Fs = f−1 (Cs) . The next result establishes basic properties of
state feedback (33).

Theorem 12 1) Fr =
½
[I,K] ∈ Gm (Rm+n) K ∈ Rm×n

¾
2) Fs =

½
[Z1, Z2] ∈ F detZ1 = 0

¾
Proof. 1) The result follows by the calculation

f ([I,K]) = g (h ([I,K])) = g

µ·
I 0
0 I

¸
,

·
0
K

¸¶
=
£
T−1, T−1A− T−1BK,T−1B

¤
= [I,A−BK,B] .

2) This follows from Fr =
½
[Z1, Z2] ∈ Gm (Rm+n) detZ1 6= 0

¾
and Fs = F − Fr.

The properties of f guarantee that, if Kk is any sequence of feedback matrices such that the closed-loop systems
(3) converge in C, then the sequence [I,Kk] also converges in Gm (Rm+n). By Theorem 12, degeneration of (3) to a
point in Cs occurs iff [I,Kk] converges to a point in Fs. In other words, the limiting compensator always exists, and
it is singular iff the limiting closed-loop system is singular. Compensators in Fs are not physically realizable, since
they correspond to feedback laws of the form

Z1u = −Z2x+ v
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with Z1 singular. Yet, as a mathematical object, each compensator in F determines a well-defined closed-loop system.
For the special case of minimum-order stable limits, as in Theorem (7), we can obtain the form of Z1 and Z2

explicitly.

Theorem 13 If ξ = [X, I,XB] is given by (23), then f−1 (ξ) =
£
0,
£
Λ I

¤¤
.

Proof. Choose a representative
£
Z1 Z2

¤
for f−1 (ξ) . From (23), (34), and (35),

·
I 0
0 Z1

¸
T−1 =MT


³ eA11 − eA12Λ´−1 0

−Λ
³ eA11 − eA12Λ´−1 0

T−1,
for some nonsingular M. Hence, Z1 = 0 and· eA11 − eA12Λ

0

¸
=MT

·
I
−Λ

¸
.

Letting " fM11
fM12fM21
fM22

#
=MT,

we obtain fM21 = fM22Λ. Also, from (34) and (35),·
0
Z2

¸
=

·
I 0
0 0

¸
T−1A−M,

so
Z2 = −fM22

£
Λ I

¤
.

Since rank
£
Z1 Z2

¤
= m, fM22 is nonsingular. Premultiplication of

£
Z1 Z2

¤
by −fM−122 yields the desired result.

We conclude this section by examining behavior of the input function u under high-gain feedback. For simplicity,
we will only consider the case where v = 0. If we apply the feedback gains Kk to (3), then both u and x depend on
k, and are related by the feedback law

uk = Kkxk.

In Theorems 9 and 10, we established cases under which the state-transition matrix Φk converges in two different
topologies. More generally, consider the linear subspace

D00 = C [0,∞) + span
n
δ,

.

δ,
..

δ, . . .
o
⊂ D0+,

where C [0,∞) is the set of continuous functions on R with support in [0,∞) . Both weak* convergence and uniform
convergence on every [ε,∞) correspond to specific topologies on D0. It is easy to show that both make D0 a topological
vector space.

Theorem 14 Suppose D0 is given a topology that makes it a topological vector space. If [I,A−BKk, B] →
[X, I,XB] ∈ CI and Φk → Φ in D0, then uk → UΦx0 in D0.

Proof. From (29) and Theorem 5, part 2),

UΦ+Kk (A−BKk)
−1Φk =

³
U +Kk (A−BKk)

−1´Φ+Kk (A−BKk)
−1 (Φk − Φ)→ 0,

so
uk = −Kk (A−BKk)

−1
Φkx0 → UΦx0.

Theorem 14 can be extended to v 6= 0 through choice of an appropriate space of inputs v and exploiting the
properties of the convolution operator. We leave the details to the reader.
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6 Application to Cheap Control
A classical problem in the theory of linear-quadratic optimal control is the “cheap control” problem, where an input
function u∗ (t) is sought to minimize the cost

J(ε) =

∞Z
0

xTx+ εuTudt

subject to (1), with fixed initial condition x0 and small ε ≥ 0. For ε > 0, this problem has been extensively studied
(e.g. see [14], [7], [12], [15]). The solution is obtained by constructing the unique positive definite symmetric solution
P (ε) of the algebraic Riccati Equation

P (ε)A+ATP (ε)− 1
ε
P (ε)BBTP (ε) + I = 0.

Then, for each x0, the optimal u and x are related by the feedback law

u∗ = −1
ε
BTP (ε)x∗,

yielding the closed-loop systemµ
A− 1

ε
BBTP (ε)

¶−1
.
x
∗
= x∗ + δ

µ
A− 1

ε
BBTP (ε)

¶−1
x0

(cf. (28)).
For ε = 0, we adopt (21) and (22), let " eQ11 eQ12eQT

12
eQ22

#
= TTT,

and let Γ be the unique positive definite symmetric solution of the reduced Riccati equation

Γ
³ eA11 − eA12 eQ−122 eQT

12

´
+
³ eA11 − eA12 eQ−122 eQT

12

´T
Γ− Γ eA12 eQ−122 eAT

12Γ+ eQ11 − eQ12 eQ−122 eQT
12 = 0.

Setting

Λ = eQ−122 ³AT
12Γ+ eQT

12

´
(36)

leads to values of X, U, and Φ according to (23), (24), and (25). It is shown in [15], Corollary 2.6.1, that J (0) is
minimized, subject to (1), by x∗ = Φx0 and u∗ = UΦx0. Furthermore, [15], Theorem 2.7.1 indicates thatµ

A− 1
ε
BBTP (ε)

¶−1
→ X

as ε→ 0+. These facts are now interpreted in the context of the present paper.

Theorem 15 For each ε ≥ 0, let ξ∗ε ∈ Cr be the optimal closed-loop system in the cheap control problem. Then
ξ∗ε → ξ∗0 in C as ε → 0+, where ξ∗0 is stable and ord ξ

∗
0 = n −m. The limiting system ξ∗0 is determined uniquely by

the singular compensator
£
0,
£
Λ I

¤¤ ∈ Gm (Rm+n) as in Theorem 13, where Λ is given by (36).

7 Conclusions
In this paper, we have developed a general theory of high-gain state feedback, retaining a fixed state coordinate
system. For many control problems, this approach lends itself to a more natural interpretation of results than if the
coordinates were allowed to vary with the feedback gain. Relationships to other seminal work in the area have been
drawn. As in our earlier similar work on high-gain observers, the present paper has focused primarily on system
parameter convergence and behavior of solutions, particularly in the cases of stable and zeroth order limits. A unique
aspect of our results is that even infinite state feedback gains are identified with specific mathematical objects. As
future work, we hope to be able to extend our results to observer-based output feedback and, ultimately, to general
output feedback.
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