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A CHARACTERIZATION OF BOUNDED-INPUT
BOUNDED-OUTPUT STABILITY FOR LINEAR TIME-VARYING
SYSTEMS WITH DISTRIBUTIONAL INPUTS*

DANIEL COBB' AND CHI-JO WANGH

Abstract. We consider the problem of extending the concept of bounded-input bounded-output
stability to linear time-varying systems with distributional inputs. In particular, the notion of impulse
response is examined in a functional analytic setting. This requires that we first extend the classical
notion of an integral operator to distribution space. Duality theory for several key normed spaces
is then examined. Next, the adjoint operator corresponding to the given system is studied. Finally,
necessary and sufficient conditions for stability are established, along with several expressions for the
“gain” of the system.
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1. Introduction. The concept of impulse response has traditionally played a
central role in linear system theory. In spite of this fact, certain fundamental system-
theoretic ideas have apparently not been developed on a mathematically rigorous level
for systems with arbitrary distributional inputs and outputs. In a previous paper
we addressed the problem of characterizing bounded-input bounded-output (BIBO)
stability in the time-invariant case. In this paper we extend the theory to include
time-varying linear systems.

To frame the problem, recall that in classical system theory a “system” is typically
viewed as an integral operator

(1.1) y(t) = /_00 h(t, T)u(r)dr.

It can be shown (e.g., see [2, p. 109]) that (1.1) determines a bounded linear operator
on L% if and only if

(1.2) sup /00 [h(t, )| dr < o0.

t J—oo

Such a characterization is inadequate, however, for studying systems with distribu-
tional inputs u, since the integral (1.1) is not defined. In spite of this fact, the kernel
h(t,T) is often referred to as the system “impulse response.” Furthermore, there are
many comion systems where h itself is a distribution. For example, consider the
“time-varying gain”
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Based on formal manipulations,

h(t,7) = B(t)6(t — 1),

where ¢ is the unit

ndition {1 92) ranney + ho ad Airantlo 4
A\ A 1 U L \l Y4

unt )} canniot be applied directly to distributions.
Our goal is to develop a more general theory that characterizes stability for systems
with distributional inputs and distributional impulse responses.

In section 2, we present basic analytic results that will be required in subsequent
sections. In section 3, we study families of distributions in one variable satisfying
certain smoothness properties in the index. These are then interpreted as distributions
in two variables and used to generalize the notion of an integral operator. Section
4 applies the theory of normed-space extensions, developed in [1], to distributions in
two variables. It is shown in Theorem 4.3 that the space of BIBO stable kernels (i.e.,
functions satisfying (1.2)) extends naturally to the space of distributions which are
derivatives of functions of uniformly bounded variation DUBV. Section 5 contains
the main results of the paper. Theorem 5.3 states that BIBO stable linear systems are
precisely those with DUBV kernels, Theorem 5.4 gives an expression for the adjoint
system, and Theorem 5.5 establishes several equivalent representations of the system
gain.

2. Preliminaries. First we nrpcpnf some nnrt nent

of distributions. See [3], [4], and [5 ] for more detail. If ¢ : R” — R, defin th support
of ¢ (denoted supp ¢) to be the closure of the set {(t1,...,t,) € R*¢(t1,...,t,) # 0}.
Let K, be the space of C*° functions ¢ : R™ — R with supp ¢ bounded. Convergence

in K, can be defined in several ways. When we assign a norm || - || to K, we will
refer to the pair (K, | - ||). For example, K; C LP, 1 < p < 00, so we may consider
(B[l - llp). Also,

1l = ( / supwm)m) o

-0 T

for i € K3, 50 (K2, || - [|poo) is well defined for 1 < p < co. Strong convergence ¢, — 0
in K, means that there exists a < oo such that supp¢, C [—a,a] for every k and
|éxllcr — O for every integer p > 0, where

= max {

A distribution f is an element of K, the dual space of K,, under strong conver-
gence. For f € Kn, supp f is defined to be the complement of the largest open set
U C R™ such that supp¢ C U implies (f,¢) = 0. Let K}, be the set of all f € K
such that there exists a € R with supp f C [a, 00). AlbO let K5, be the set of all
[ € K3 such that there exists a function a : R — R with a(r) — oo as 7 — oo and
supp f C {t > a(7)}. Note that K7, is a subspace of K. Weak* convergence fi, — 0
in K, means that (fs,¢) — 0 for every ¢ € K,,. One basis of weak* neighborhoods
of 0 in K, consists of all sets of the form {f | [{f, ¢;)| <e&;i=1,...,m}, where & > 0
and ¢y,...,¢,, € K, are arbitrary.

The partwl derivative of f € K with respect to ¢; is defined by ( By =

—(£,§ ot; 2 for ¢ € K,. It follows that the differentiation operator f — a—t, is (weak*)

continuous. In case n = 1, we denote a derivative by ‘—;*’% or by an overdot f; the kth

8il+..-+in (p(tla ceey tn)
at"il e at’:{]

~--|—in§p;t1,...,tn€R}.
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derivative will denoted %;,ci or f®) Forany f € K 1, define the to-translation A, f by

(ADto fr8) = (fy¢_s,), where ¢_, () = @(t +to). By a routine calculation, LN f =

Ay, f. Multiplication of f € K 1 by a C™ function v is defined by (fv, ¢) = (f,v9).
A Lebesgue measurable function f : R® — R is locally integrable if i) 4 || < oo for

every bounded interval A C R". Every locally integrable f determines a distribution
according to

<‘f’¢>:/- /— f(tlaatn)¢(t177tn)dtldtn

Note that the unit step function

(1, t>0,
“l0, t<o,

may be considered a distribution in K7; the unit impulse § € K is defined by (6, ¢) =
#(0). Translations of § and 6 will be denoted by 6;, and &;,, respectively. It is easily
verified that

(2.1) 01, (1) = 0(t —t0), (bt ¢) = $(to).

If f is an absolutely continuous function, f and its classical derivative f are locally
integrable. In this case, the classical and distributional derivatives of f coincide, since

(hey= | fwewa—- [ swia=(.6).
Counsider the spaces

BV={g:R->R| v.;:u*g(t) < o0},
NBV = {g € BV | g is left-continuous and g(c0) = 0}

with norm ||g||n sy = var; g(t). (Note that we are deviating slightly from the conven-
tional definition of NBV, as in [9, p. 171].)

In [1] we also considered the space DBV = {g | g € NBV'} with norm ||g|ppy =
lglinpy. We showed in {1, p. 989] that DBV is isometrically isomorphic to the
dual space of (K1,|| - ||oo). Furthermore, for any ¢ € NBV and ¢ € K1, (§,¢) =
ffooo $(t)dg(t). We need to generalize these ideas to distributions on R2. The appro-
priate construction requires a preliminary result.

LEMMA 2.1. Let g : R? — R be Lebesgue measurable and g(t,-) € NBYV for a.e. t.
Then the function

v(t, ) = var g(t,n)
n2T
is Lebesgue measurable on R2.
Proof. Enumerate the rationals {r }, and consider the partition 7, = (r,,...,7%,)

of R, where {ki,...,k,} = {1,...,n} and

Thy <Thy <0+ < Tk, .

n
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Let A= {t|g(t,-) € NBV}. Foreachn,j=1,...,n—1,and (t,7) € AX(Tk,,Tk; 4.},
define

n

Un (ta T) = Ig (ta rkn)l + Z lg (t17'ki) -9 (t’rkz‘+1)| + |g (t"r) -9 (tvrkj-q-l)' .
i—jt1

For other (t,7), set v,(t,7) = 0. Each v, is Lebesgue measurable. Let ¢ > 0,
(t,7) € Ax R, and 7 = (14, ...,7p) be any partition of (7,00) such that

p—1

alt,) = lg (bl + D lg (67s) — g (b el +lg (6,7) = g (b7)| > w(t,7) - .

=1

Since g is left-continuous, there exists N < oo such that m, contains rationals Tk;,
with 7 <7g; <.+ < Tky, such that

lg (t:rx;,) —g@t,73)| < ;f;

for every ¢. Thus
p—1
vp(t,7) 2 ‘9 (t,rk,»p>1 + Z ’g (tirey,) — g (tyrkjm)‘ +g(t,7) =g (tray,)|
=1
2> Ig (thP)! - Ig (ts Tkjp) - 4g (tan)l

p—1 p—1
+Y Mgt ) =gt rig) = D |9 (brey,) — 9 (8,74)|
=1 =1

p—1 .

—vln(fqm \ g(t 'r;m)!

L |.v \';"’"‘ji+1/ - PR o |

i=1
+ ,g (t, T) - g(t’ TI)' - Jg (t7 Tkjl) -9 (t7 TI),
€
> q(t,7) — =
zqt,7) — 5
> o(t,7) —e.
So v, — v a.e., and v is Lebesgue measurable. g

In particular, if ¢ satisfies the conditions of Lemma 2.1, the map t — var, g(t, 7)
is Lebesgue measurable. Hence, we may define UBV to be the set of functions g :
R2 — R satisfying the following properties:

(UBV1) g is Lebesgue measurable.

(UBV2) g(t,-) € NBV for ae. t.

(UBV3) esssup, var, g(t,7) < oco.

We refer to UBV as the functions of uniformly bounded variation. Let ||gllupy =
esssup, var; g(t, 7). Bach g € UBV is bounded, since

Ig(tv T)l < v,?‘rg(t7 T) < ”g“UBV ’

Thus g € K, and we may also define the set of partial derivatives

_J9g
DUBV_{aT]geUBV}.
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It is routine to verify that UBV and DUBYV are linear spaces and that || - ||ypy and

dg

. = HQHUBV

bUBvV

are norms on UBV and DUBV.
For 1 < p < oo, let U L? be the space of Lebesgue measurable functions f : R2 — R
satisfying

00
ess sup/ [f(t, )P dr < 0.
¢ ~

- 00

(Lebesgue measurability of the map t — ffooo |f(t,7)|Pdr follows from [9, Theorem
7.8].) ULP is the set of uniformly LP functions and has norm

-0

We may consider ULP ¢ K, since, from Holder’s inequality,

/_a/ [Ft, )l drdt < /_; (ebssup/“u{ (t,r)]d'r) dt

= 2q ess sup/ |f(t,7)|dr
t —a

< (207 ess Sup ( / ’ £t T)lpd7> '

—a

For p = 0o, we define UL™ to be the same as L™ on R2,
Support constraints may be placed on the spaces above by setting LE = LPNK] 4+
UBV, =UBVNK;,, DUBV, = DUBVNK}, ,and ULP, =ULPN K, .
THEOREM 2.2. (1) Let g € UBV and gt = g(t,-). Then

()= [ [ wendgina
for every ¢ € K.

(2) UL' € DUBV with | f||pusv = ||f|lec1 for every f € ULY.
(8) DUBV s the dual of (Ka, |+ [l100)-

(4) UBV and DUBYV are isometrically isomorphic.

Proof. (1) Integration by parts yields

<g—f—,w>=—< 0?/)> [/ (2T gy - //z/)trdqt)

for every 1.
(2) ¥f f € UL, there cx1sts a Lebesgue measurable A C R such that f(¢,-) € L}
forevery t € A. Let g(f,7) j_ ft,n d77 fort € A. Then g is Lebesgue measurable,

g(t,-) is absolutely continuous, and f = 32. The result follows from

Je o]

/iy = esssupvarg(t, 7) = esssup / T dr = ] g < o0

— 00
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(3) We first prove that DUBYV is contained in the dual of K5. Let g and g, be
asin (1) and f = —gg. We must show that

sup [(f, )] = ”f“DUBV'

Il o=

F ) = ‘ I wu,rmgt(q-)dt{
/ / Y(t, 7)| |dge ()| dt

5/ sup [¢(t, 'r)lvarg(t T)dt

oo T

From (1),

o0

< (esssupvarg(t,'r))/ sup [4(t, 7)| dt
t T

= Ifllpusy 1¥l1c,

850

Sup |<f, TP)[ < Hf"DUBV'

IW"' loo™

To establish the reverse inequality, observe that, for ¢,,¢, € K\, setting ¥(t,7) =
@1 (t)pa{7) yields 9 € Ky and

Wlheo = [ sup 1810820l dt = finlhs 6]

Thus
)| = (t, 7)dgs (r)dt
o = e / / (t,7)dge(r) ‘
> 7)d £)dt
_u¢fﬁlp-1n¢1ul~1/ </ $2(r)dg:(7 )¢1() '

= sup esssup

Tdt'r
léallo=1 ¢ /_oo¢2( )dg:(7)

=esssup sup (g, 4y)]
b alle=1

= esssup 9:1l p 5y

= fllpusy -

Next we show that DUBV contains the dual of (K3, || |l1c0). Let f be any continuous
linear functional on (K, ||-|lico). (f is also a distribution, since ¥, — 0 strongly in Kj
implies ||9g[|100 — 0 and (f,%,) — 0.) Let ¢, € K;. Then each ¢, € K, determines
P € Ky by ¥(t,7) = ¢1(t)d,(7) (i-e., ¥ is the “direct product” ¥ = ¢; X ¢,). The
map ¢, — 1 is continuous from (K1, || - [|oo) into (K2, || - [[100), 80 ¢g — {f, Py X ¢g)
is a continuous linear functional on (K1, || - ||co). Since K7 is dense in Cy, there exists
G(¢y; ) € NBV such that

(2:2) o x )= [ " 4a(r)dC(6y:7)
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for every ¢,. 1t is routine to show that the operator ¢, — G{¢y;") is linear. Continuity
also holds, since

sup G(d1; )llwpy = sup  sup / 9a(r)dGC(1;7)
@ lly=1 llo1li;=1 ligall o =11/ ~o0

= sup sup [{f, ¢, X ¢y
li#ell,=1 “¢2“w=l

< sup [{f,9)]
il 100 =1

for every ¢, ¢y € K. Let II = {¢, X ¢g | ¢1, ¢, € K1}. By linearity,
(23) = [ [ g

for every ¢ € spanll. From [6, p. 65], spanIl is strongly dense in Kj, so it is also
dense relative to || - l1c0. By continuity, (2.3) holds for all ¢y € K,. From part (1),
f=% eDUBV.

(4) Note that the map g — g—;"- from UBYV into DUBYV is defined to be linear,
onto, and norm-preserving. It remains to show that the map is one-to-one. From part

(1), if g2 =0,
/ - / " w(t, P)dge(r)dt = 0

for all ¢ € K5. Hence
[ /_ b1 (t) o (T)dge (T)dt = 0

for all ¢, ¢, € K;. Since

{ / Z by (D)dgr(7)

S ”¢1 ”oo V?_‘rg(tv T)

for a.e. t, the map t — [ ¢, (t)dg:(7) may be viewed as a distribution T'(¢,;). But
(T(¢1), ¢2) = 0 for every ¢, s0 T(,) = 0 and

| awdain =o

a.e. for every ¢;. Since NBV is the dual of (K3,{ - |oo), 9(t,-) = O for a.e. ¢ and
g=0a.e. O
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3. Families and integral operators. In order to generalize the concept of an
integral operator as in (1.1), we must study collections of distributions indexed by a
real parameter. Let {f; [ £ € R} be a collection of distributions in K7{. Suppose that,
for each a < oo, there exist an integer p > 0 and an L! function M : [~a,a] — R
such that

Kfe o) < M(t) |9l

for every ¢ € K; with supp¢ C [~a,a]. Then we say that {f;} is an L' family of
distributions on R.
THEOREM 3.1. (1) If {f:} is an L* family, then the map ¥ — [*° (fe,¥(t,-))dt

dis
(2) If f = {f:} is an L' family, then so is {f}, and %;f: = {f:}.

(3) If f : R? — R is locally integrable, then {f(t,-)} is an L' family.
(4) If f € UBV, then {f(t,-)} is an L family.

Proof. (1) Let ¢ € Ko. Then ||9(t, )llcr < ||9||cr for every ¢, so

[ ot Wt < [ M@ o dt < [ M)t ¥l -

—a —Qa

Thus the map 9 — ffooo(ft,i/)(t, -Ndt is well defined, linear, and, from [4, p. 34],
continuous.

(2) There exist M, p such that, for any ¢ € Ky with supp ¢ C [—a,a],

()| = [(d)] < M@ 8], < M@ lor

For any ¢ € K,
a{ft} . p 3"/’(t77’)
(Fhv) = - (i 2)

20
= [ {fuwte. )

={{#} ).

(3) Let M(t) = [*.|f(t,7)|dr. By Fubini’s theorem, M is L' on [—a,a]. For any
¢ € K17

W =| [ 0,70

< M(2) |9l o -

, (4) This follows immediately from part (3) and the fact that f is bounded on
R=. O

A slight modification of the argument used in Theorem 3.1(1) shows that each L*
family {f;} also determines a distribution according to ¢ — | fooo( fry (-, T))dr. We
will rely on the notation {f;} and {f,} to distinguish these two cases.

Consider a collection of distributions {f,} in K] with 7 — (f,, #) continuous for
every ¢ € K1. Then we say that {f,} is a C° family.

THEOREM 3.2. Every C° family is an L' family.
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Proof. Let {f,} be a C° family. According to [4, p. 34], each f, has finite order
on each bounded interval [—a,al; i.e., for every T € [—a,a] there exist integers M.,
pr < o0 such that

(3.1) '(f”mqb), S MT “¢”Cpq-

for every ¢ € K with supp¢ C [—a,a]. Suppose each M, and p, are chosen to
minimize ¢, = max{M,,p,}. If the set {g. | |7| < a} is unbounded, there exist
MM € [~a,a] such that n, — n and ¢, — co. On the other hand, since (f;, ) is
continuous, (fy, ,¢) — (fy, ¢) for every ¢. From [4, p. 57|, there exist M, p such that

[(Fnr ®)| < M8l

for every k, yielding a contradiction. Hence, {¢.} is bounded, and there exist M,p
such that

[(frs @) < M |9l

for every T, ¢. 0
In addition to continuity, we might also consider families {f,} which are differ-
entiable in 7. Define the weak® derivative & 7 8-y € K} of {f,} at 7¢ according to

(3.2 (Fbnb) = g oo = i (et o),

Tn—T0 Tn —To

whenever the limit exists for every ¢ € K 1. According to [3, p. 368], (3.2) determines
a distribution in K{ for each 7¢. If { 1, | To € R} is a C° family, we denote
it by —% and say that {f,} is a C! famzly Continuing in this way, if {—L} is a
CP=! family, {f.} is a CP family. Applying (3.2), {f,} is a CP? family if and only if
7 — {fr,¢) is a C? function for each ¢. We may interpret the latter statement as a
definition for p = co. Since {f;,¢) = —(fr, @), {fr} is a CP family whenever {f,} is
a CP family.
Next we relate two notions of differentiation for C? famlhe%

THEOREM 3.3. Suppose g = {g.} is a C* family. Then {
Proof. Suppose
9r — gro 9g- _
(33) (=L u.m) # <mjm¢4m@>

as 7 — 79. Then there exist 7,, — 79 and € > 0 such that
(3.4) sup

T™n — Y7o a.T Tn _dT0 T
j<h;LmimMﬁw2KL;L~®MW()NM

Ty~ To or Tn — To
for every n. But 9(-,7,) — ¥(-,7¢) in Kq, so, from [4, p. 31], {¢(-,7n)} C K; is a
bounded set. Hence, from {4, p. 56], the left side of (3.4) must converge to 0. This
yields a contradiction, so we have convergence in (3.3). Thus

Ed’; <g’r7¢('7 T)) I‘ro = lim <gT’¢(.’T)> _ <g70’w('aT0)>
T—T0 T — 7.0
=MGT%M)%M%%ﬁﬂﬁﬁ%
T—Tg T—T TeTg T — 7o

ag, 0
= <"'3%_“1T07¢('77'0)> + <nga ‘5’%!10> )
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and, for every ¢ € Ko,

99 \ _ 0

£/ G\

== | 9% /‘”
:iﬁxg%w@%@%w>»“

== lim (gr,9(,7)) + lim (g, %(,7)) +/°° <?_91 "/’("T)>dT

oo \ OT
_ [ /9
~[m<a,¢@ﬂ>w-

Hence { . a

Note that
<ae 7¢> a? /°° b(n)dn = —d(7) = (—6,,b)

for every ¢ € K 1, where 0, is a translation of the unit step as in (2. 1) In view
of Theorem 3.3, 2{0,} = {¥=} = —{6,}. By a similar calculation, = 8 {51y =
—{6{M}.

Any C°° family {h.} belonging to K5, determines a linear operator on Kj, in
the following way. For each ¢ € K7, let £(7) = (h-, ¢). Then £(7) is O™ with &(7) =0
for large 7. Suppose u € K7 with suppu C [a,00], and let £ € Ky with &(r) = £(7)
for 7 > a. It is easy to show that y(¢) = (u, £) is independent of the choice of £.
Indeed, let £; and £, be two such functions. Then supp(¢; — &;) C (—o0,a], and
(u, &) — (u, &) = (u,&; — &) = 0.

THEOREM 3.4. The map u >y defines a linear operator T : K} + — Ki,
where T(8,,) = hy, for every tg.

Proof Llnearlty is obvious. Since {h,} € K, there exists b € R such that
supp ¢ C (—o0,b] implies supp¢ C (~o0,a). For any such ¢, y(¢) = 0, so suppy C
[b,00). We must show that y € K.

The topological space K is not first-countable, so we must consider nets {¢,}
in K. Suppose ¢ — 0. Then there exists b < oo such that supp ¢, C [—b,b] for
every A. Let £3(7) = (hr,¢,). Since {h.} € K], there exists ¢ < oo such that
supp £,(7) C (—o0, ¢] for every A. Arguing as in the proof of Theorem 3.2, there exist
M, pn < 00 such that

€7 < Ma Il

for every 7 € [a,¢] and ¢ € K; with supp¢ € [, b]. Hence, { — 0 uniformly on
{a c] for every n. £, € K; can be chosen so that &,(7) = f)\<7') on [a,00) and each

{A ) uniformly on [a,¢]. Thus €, — 0 strongly in K7, and y(¢,) = (u,&,) — 0.
Finally, for u = 8;, and any ¢ € Ky, (T(6), ¢) = £(to) = &(to) = (heo, )- 0
Suppose A, = A(-,7). Then, under mild assumptions,

(T(u), ) = / ( / At 'r)d)(t)dt) w(r)dr = [ Z ( /_ O:o ht, T)u(r)dr) B()dt,
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so the operator determined by Theorem 3.4 is “classical.” For this reason, we call
every operator of the type described by Theorem 3.4 a generalized integral operator.
Suppose h, is the 7-translation of a fixed h € Kj,. Then {h;} is a C* family
and {h,} € K;,, so {h,} determines a generalized integral operator according to
(T(u), d) = (u,&), where £(7) = (h,,¢) = (h,¢_,). From [3, p. 103], constructing
T'(u) in this way yields the convolution operator w — h * u. This sets up the time-
invariant analysis we carried out in [1].

We next address the issue of continuity of generalized integral operators.

THEOREM 3.5. Let T : K{, — K], be any continuous linear operator, and
suppose {T(6,)} € Ky, is o C™ family. Then T is a generalized integral operator.

Proof. Let ¢ € Ky, u € K{, suppu C [a,0), £(1) = (T'(8,),¢), and € € K;
with £(7) = £(7) for 7 > a. We must show that (T'(u), ¢) = (u,&). First, set u = Oto-
Then

<11(6i(;)7¢> = £(t0) = E(to) = <6t07g‘> ‘

For arbitrary u € K{,, {1, Lemma 2.2] shows that there exist t;; > a, §,, € R, and
integers ny > 0 such that

N
Uk = Zlg’ikétik - U,

=1

where the limit is weak*. For every k,

(T(uk7)7 ¢)> = Zﬁik <T(5tm)’ ¢> = Z Bik <6t'i,k7g> = <uk7é> .
=1 =1
Taking the limit yields
(T(u),¢) = (u,€). O

The next result establishes conditions under which generalized integral operators
are continuous. In particular, it shows that the converse to Theorem 3.5 is false.

THEOREM 3.6. Let T : K{, — K|, be a generalized integral operator.

(1) T is continuous if and only if there exists a function b : R — R such that
b(r) — 00 as T — —o0 and supp{T'(8,)} C {|t| > b(7)}.

(2) T is continuous on {u € K|, |suppu C [a,00)} for every a > —oo.

Proof. (1) (Sufficient) Consider any basic neighborhood Y = {y € K7, | [{y, ¢;)| <
gtr=1,...,n}of 0in K7, and let &;(7) = (I'(6,),¢,). Since T is a generalized inte-
gral operator, each £, is C*. {h,} € K{, guarantees that supp§; is right-bounded.
The condition supp{7'(6,)} C {|¢t| > b(7)} guarantees that supp¢, is left-bounded.
Hence, §; € Ky, and (T'(u), ¢,) = (u,§;). It follows that the inverse image

TY) = {ue Ki, | (T(w),¢)] <ei=1,... n)
={ue K|, ||(u,&)|<ei=1,...,n)

is open. Since €, ¢y, ..., ¢, are arbitrary, T is continuous.
(Necessary) Suppose no such function b exists. Then there exists a sequence
Tk —+ —00 and ¢ < oo such that supp T'(6,, ) N[—c, ¢] is nonempty for every k. Hence,

there exist ¢, € K such that supp ¢, C [—¢,c] and 8, = (T'(8,, ), ¢;) # 0 for each k.
Let

I S
ol o

3 P-
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Then, for any integers p > 0 and &k > p,

felon = o ol
ISklice k”qskuck kliCcr

AN

| =

so €, — 0. From [4, p. 31], {{,} is a bounded set. Let

U = ]f—”%i‘—lgi(sfk.

Then ur — 0. On the other hand,

s:ip (T(ur), €m) = (T(ur), €x)

— (Moo, g, )
-1

3 (T(6r,.): kel on €x)

-1
B

From [4, p. 56], T'(ux) #» 0, which is a contradiction.

(2) Let ux — 0 be a net with suppuy C [a,00), ¢ € K3, and £(1) = (T(6+), ).
Select £ € Ky with (1) = £(7) for 7 > a. This gives (T'(uy),d) = (uy,&) — 0, so

In view of Theorem 3.6, restricting attention to continuous linear operators on
K1, would be inadequate for developing a sufficiently comprehensive theory of stable
linear systems. For example, even the “integrator system” T(6,) = 6, is discon-
tinuous. On the other hand, the class of all generalized integral operators on K,
contains the full range of operators normally considered in linear system theory, so
we will adopt these as our space of systems.

We end this section with a result relating impulse response and step response.

'THEOREM 3.7. Let T : Ki, — K|, be a generalized integral operator. Then

{T(0:)} is a C™ family and T(6,) = ~‘—9%(%—~2.
Proof . From Theorem 3.6(2), T is continuous on {u € K|, | suppu C [rg—1,00)}

for any 7. Hence, for any ¢ € K1,

(76,9~ gwm),@ _ <T ("7;_9?) ,¢> — (=T(5+,), 6)

<T(§§")),¢> - <T(6£’;)):¢> _ <T (65}1) _ 5&2)) ,¢> B <-T(5(Tn+l))’¢>

(T(67,), %) = 1.

T—Tq T —Tg 0

as T — 7g for any n, so {T'(6,)} is C*. The first derivative is given by

(P ) = 2 (e =T 9. D

i

4. Extension of normed linear spaces. In [1] we considered the problem of
imbedding a normed linear space Y into a Hausdorff topological vector space X and
extending the norm to a maximal linear subspace of X. For example, we showed that
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L' can be imbedded in K| and || - ||; can be extended to all of DBV. In particular,
the extended L' norm applied to the unit impulse evaluates to [|§[|¢ = 1. We will
again need these results to construct our time-varying theory.

Let T be the topology on X, || - || the norm on Y C X, and B(y,r) C Y the closed
norm-ball about y € Y with radius r. We make the following assumptions on the
4'tuple (X7 ‘13 Y7 “ : “)

T1. For every nonempty U € T, U NY is nonempty.

T2. Forevery U € ¥ and every y € UNY, there exists r > 0 such that B(y,r) CU

T3. There exists U € T such that UNY =Y — B(0,1).

Condition T1 says that Y is dense in X. T2 requires that the norm topology on Y’
i : v
i closed relative to X. Thus T2 ar.rd T3 sive bounds on &} v

L0 i1 O BiIVE sounas on v

by X. Under assumptions T'1--T'3, there exists a natural extension H ll¢ o
subspace Ye D Y of X. In particular, for any y € Y, |lyll© is equal to the minimum
value of lim lly,]| over all T-approximating nets y» — y, y» € Y. (See [1, section 3]
for details.)

As mentioned in section 1, h € UL is the classical condition for BIBO stability.
Therefore it makes sense to examine the extension UL of || - ||oo1 in K% and check
whether UL} actually characterizes BIBO stability for generalized integral operators.
First we must establish whether K and UL* satisfy T1-T3.

LEMMA 4.1. (1) If Yy is dense in Y relative to |- ||, then the 4-tuple (X, %, Y1, 1))
satisfies T1~T3 and Y1, = Y,.

(2) Let Y C X1 C X and %7 be the relative topology on Xy induced by T. Then
the 4-tuple (X1,%1,Y, || - ||} satisfies T1-T3 and the corresponding extension of ¥ s
Y. N Xy,

Proof. (1) From T1 and T2, Y7 is dense in X relative to T, so T1 holds for ;. If
UeTandyeclUNY, then y € UNY, so there exists r > 0 such that B(y,r) C U,
where B{y,r} is a norm-ball in Y. The corresponding ball in Y; is B(y,r)NY; C U,
so T2 holds. Finally, if U satisfies T3 relative to Y, then U also satisfies T3 relative
to Yy, since

UnYi=UnY)nY, =Y -B(0,1))NY; =Y, — (B(0,1)NY7).

Finally, we must show that || - ||* satisfies [1, Proposition 3.1(1)-(3)] using ¥; in place
of Y. To prove (1}, note that, since || - || and || - || coincide on Y, they must coincide
on Y;. Condition (2) holds, since it does not involve Y. To prove (3), let z € X
with |lzl|¢ < oo, € > 0, and let U be a T-neighborhood of . Then (3) applied to Y
guarantees that there exists y € U N'Y such that

ol < flel” + 5.

Density of Yy in Y relative to || - || and T2 imply that there exists y; € U NY; such
that fly1 ~— gyl < §. Then

Il < iyl + g < llzll° +e.

(2) Restricting ¥ to Xy, T1-T3 are obvious. Suppose Y. is the extension of Y
using X, and || - [|° is the corresponding norm. Let |f - |/ be the restriction of ||z||®
to X;. We must show that || - ||/ satisties [1, Proposition 3.1(1)-(3)], using X;. To
prove (1) and (2), note that ||z]|° and ||z]|/ coincide on X;; hence, ||yllf = ||y|| for
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y €Y and |- || is lower semicontinuous. To establish (3), let U € T z € UN X; with
lz||f < oo, and € > 0. Then ||z||® < co and there exists y € U N'Y such that

Iyl < Jlz))® +e = flz})” +e.

ButY C Xy,s0 ye (UNXy)NY. 0

THEOREM 4.2. Let X = K} and Y = UL. Then T1-T3 are satisfied.

Proof. First we note that Ko C UL!. From [4, p. 118], K3 is dense in K}, and
T1 foliows. If T2 holds for y = 0, then it holds for all y, since B(0,r) C U implies
B(y,r) C y+U. Thus it suffices to prove that, for every n, € > 0, and ¢4, ..., %, € Ka,
there exists r > 0 such that B(0,r) C U, where

T g

!

& K

h

o [{F ¥l <gi=1,...,n}.

Let

r < &min{

1 }
El'llj J e E (:7 ) II:I}I I}lBCIBIn 2'27

Il < W fllprsy 1€illheo = 1 oot 1¥illi0e < 'rmax{llw ”100} <€

for every i,s0 f € U.

To prove T3, let y € UL! with ||ylloo1 > 1, and choose € < 2(||ylloo1 — 1). From
Theorem 2.2, we may select 1 € Ko with ||7,b||1oo = 1 such that ](y, )| > lylloor — €.
Let

U={zeKy|((z—y,9)| <e}.
Thenye U € %, and f € UNY implies

[ lloor 2 1CF, 90 2 [(y, ) = [(f = 4, ¥ > [[Ylloy — 26 > 1,

soUNY CY - B(0,1). O
We are now in a position to characterize the extension of UL! into K3.
THEOREM 4.3. UL! = DUBV.
Proof. Let

i1 = [ Wlousy 7€ DUBY,
o, f € Kj~ DUBV.

We must verify that || - || satisfies [1, Lemma 3.1(1)—(3)] relative to || - ||oo:. Condi-

tion (1) says that || - |1 and || - |pypv coincide on UL. This was established in
Theorem 2.2.

COlondition (9) roanireg +he At He ho lawrar cormieemmdimioaiie mo Py

LORGIen (&) requires tna be lower semicontinuous on 1\2 uquwalt:umy',
we must show that the set ¥y = {f € K4 | || f||® > M} is open for each M. Suppose
I fIl* > M. From Theorem 2.2(3), there exists 9 € Kj such that ||¢)]j100 = 1 and
[(f, ) > M. Let U = {g € K3 | |{(g,¥)| < [{(f,9)| ~ M}. f+U is open in K3, and

If+9lI° = [{f + 9,9 = {f, )] = [{g, )| > M

for every g € U. Hence, ¥, is open.

il
I



1236 DANIEL COBB AND CHI-JO WANG

Finally, condition (3) says that, for any f € DUBYV, ¢ > 0, and neighborhood U
of f, there exists y € U N UL such that [|yfleor < ||FII® +&. We accomplish this by
constructing a sequence f, — f with f,, € UL! and || fulloor < || fllpusv. Then, for
large n, f, € U, and y = [, satisfies the conditions.

Our construction of f, proceeds as follows. Let ¢, ¢, € Ky with ¢,(t) = 0 for

all ¢, f $1(t)dt =1, ¢5(0) = 1, and [|¢yllec = 1. Set ,,(t,7) = ngpy (n(t — 7))o (Z).
Then zp € C™, Suppose supp (bl,supp ¢ C [~a,a}. If |7} > na, then |Z] > a, so
$2(%) =0 and 9(t,7) = 0. If |7| < na and |t| > (n + %)a, then

1
n]t*'rlZn(ItI—ITD>n<n+7)a~n2a:a,
7

50 ¢y (n{t — 7)) =0 and ¢, (¢,7) = 0. Hence, ¢,, € Ks.
Let

) = [ wnlr o)

and f = 22 Then
St < [ [ e midne)
= [ [l dridan

= [l (D[ otntr = ayar) ot
[ Je. (][] #rtwrac) )

< var g(t,n),
7

W fnlloor < ess§upvgrg(t,T) =|fllpusy -

To show (fn, %) — (f,¢), note that, for every t,n,z € R, (¢, & Z4+m) — P(t,n)
and

.00 .
, T < I
| lo@u (6.5 +n)] o <l
By the dominated convergence theorem,
Sttt riir = nay (2) [ ytut — it miar

(/52 / o (z t E + 7}) dz

— ¢5(0 / é1(z

= 1p(t,n)
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for every t,n. Furthermore,

[ it

<n o (2 / 91 (n(r — ) [(t, 7)) dr

b (D] [ ai@ o (1.2 40)]|ao

< it Moo »

so, if supp ) C [~a,al?,

| el sl de < [ e, var ot e < 20 Wl ol -

Again, by the dominated convergence theorem,

Goth= [ [ st riirdasmyi

5 [ ‘: /Z Wlrn)dge(n)dt = (f,9). O

COROLLARY 4.4. Let X = Kj, andY =UL%. Then X and Y satisfy T1-T3
and Y, = DUBV, .

Proof. We have K, Cc ULY ¢ UL C K}, with K, dense in K} (see [4, p. 118]).
Hence, UL1 is dense in UL'. From Lemma 4.1(1) and Theorems 4.2 and 4.3,
(K}, %, UL+, Il - lloo1) satisfies T1-T3 and ULY, = UL! = DUBV. Furthermore,
UL, ¢ K}, C K}, so Lemma 4.1(2) implies that (K2+,‘$1,UL+, I - floo1) satisfies
T1- T3 and UL}, = DUBV N K/, = DUBV,. a0

5. BIBO stability. In this section, we consider stability of linear operators
T: Kj; — Kj,. (We must restrict our attention to K1, in order to have a consistent
definition of generalized integral operators.) As in [2, p. 109], we define a BIBO stable
linear operator 1" to be one such that

(81) T(LY) = L2,

(82) T is continuous on LY relative to || - ||oo-

We have shown in [1] that, for time-invariant (i.e., convolution) operators, (S2)
follows automatically from (S1). Unfortunately, this result does not extend to the
time-varying setting. For example, let h, = e~ 76,.. For any u € LY, ¢ € Ky,

5(7') = (h‘ry ¢> =e " <6T7 (/)) = eHTd)(T)y

geel

ot = (&) = [ umed(rdr
—00

Thus y(t) = e *u(t) and y € LS. However, the map u — y is not contlnuous on L.
Indeed, let ug(t) = £0(t + k); then flurlico = § — 0. But yx(t) = te™t0(t + k) and
lvklloo = e-,:— — 0o. Thus, as in [2], we adopt (SQ) as an mdependent assumption.

Since classical integral operators satisfying T'(6,) € UL' are known to be BIBO
stable, a natural conjecture is that a generalized integral operator is BIBO stable if
and only if {T'(6,)} € ULL, (= DUBV, by Corollary 4.4). The following example
lends support to this idea. Let T(8,) = 6. Then (T(u), @) = (u, &), where &(7) =
(65, ) = (=1)"¢{™ (7). Hence (T'(u),$) = (u,(~=1)"¢™) = (u™ @), and T(u) =
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w(™. In view of (S1), the n-times differentiator is BIBO stable if and only if n = 0,
since T(8) = 6™V ¢ L™ for n > 0. On the other hand, {6} = ——\a—a;{ﬁT}, and
{6} € UBV,, s0 {6,} € ULL, = DUBV,. But {6} = —5-105 7"} for n > 0,

and 60"~V ¢ UBV, so {6} ¢ ULL,.
Cf)rl'esl)orl(lillg to each generalized integral operator T' we may associate an oper-
ator T': K| — C° defined by
T(9)(r) = (T(65),9) -
Let ¢ € Ky, u € L%, € = T(¢). Then

(T(u),¢) = (u,E) = / (r)dr.

This suggests an adjoint relationship between T and T, which we will explore fur-
ther in Theorem 5.4. First we need a result which shows that stability of T can be .
characterized in terms of 7.

LeMMA 5.1. T is BIBO stable if and only if

sup/ T((j))(r)'d'r<oo.
PEK) J—oo
fibll, =1

Proof. The proof is identical to the proof of [1, Lemma 4.1(2)], replacing the
phrase “convolution operator” by “generalized integral operator.” il

If 7 is BIBO stable, Lemima 5.1 indicates that 7" is a continuous linear operator
from (K1, |- [|1) into (L3, | - [}1). Since (K7, - ||1) is dense in L', T extends uniquely
to a continuous linear opemtor T, LY — LY.

LEMMA 5.2, Let T : Ki, — K{, be a BIBO stable generalized integral operator,
s(+,7) = T(G) (,)_st( y=3s(t,7), ¢ € L, and u € L*®. Then

(1) 7 — j s(t T) p(t)dt is absolutely continuous,

(2) 5(75)( )= — ‘m s(t, T)p(t)dt for every T € R,

3) [ T)fU_ Ypt)dt = [ [7, o(t)ulr)ds,(r)dt
Proof. Fromw |7, Themem 2.3.9], there exists g : R? — R such that g(-, -} — g(-, 00)
€ UBV, the map 7 — ffom g(t, T)p(t)dt is absolutely contimious, and

A0

Tl ) (1) = a"— /_““ a(t, )b (t)dt

for each ¢ € L'. Let ¢ = [ _g(t, 00)¢(t)dt. Then

/ T s(hto) gt dt = [ 0, (1) T (6) (7) dr

—00 - 00

- /:T(qb) (r) dr

- [ ([

:[m (9 (t,00) — g(t,t0)) & (£) dt

—c— /jo glt, to)p(t)dt,



STABILITY OF DISTRIBUTIONAL SYSTEMS 1239

from which (1) and (2) follow.
To prove (3), note that, for any ¢ € L}, |¢(t)| < oo a.e. and

e (—00, 7] = (t)s(t, 7)

determines a finite signed Borel measure on R for a.e. t as does

00

51) p(eoorl =g (1) = [ (oo, 7l

—00

Consider the family £ of sets A C R such that the map ¢ — p,(A) is Borel measurable
for a.e. t. Since

() = var s(t, ),
Re L. If A B e L with A C B, then

pe(B — A) = uy(B) — p(A),
soB-AeL If A, €L with A4, T A, then

1 (A) = py (Ay) + Zﬂt(AnJrl ~ An),

so A € L. From the m— X theorem (see [8, Theorem 4.2]), every Borel set in R belongs
to £. Hence, t — p,(A) is Borel measurable for any Borel set A and

[wawz[:

Also, if the A,, are pairwise disjoint,

/_ w 1hy <LT£A,L> dt = [ - D n(An)dt = > /_ - e (A )dt,

Lﬂmwﬂ

dts‘[f°/g1¢a>uda<fndtslquBvu¢u1

so the map

(5.2) 4 /oo 1 (A)dt

is a finite signed Borel measure. Since y and (5.2) have the same distribution func-
tion (5.1),

mm=/mwma

o =00

for each A.
Let I4 be the indicator function on A. Then

[:mww=[:[:hmwm,

(5.3) / 0; IA(T)d./;Zs(t, P(t)dt = /_ Z [ Z (8) L (r)de (7).
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Both sides of (3) are bounded by ||uljeollsllusv|i®ll1, s0, as functions of u, they both
represent continuous linear functionals on L®°. Since the span of the indicators I4 is
dense in L*, 5.3 implies (3). B}

We are now in a position to prove our main result.

THEOREM 5.3. Let T : Ky, — Ki, be a generalized integral operator. The
following statements are equivalent:

(1) T is BIBO stable.

(2) {T(6-)} e ULL,.

(3) {T'(6,)} € UBV,.

Proof. From Theorem 3.7, {T'(6,)} € UBV, if and only if {T'(8,)} € DUBV,.
From Corollary 4.4, DUBV, = UL . Thus (2) and (3) are equivalent.

To prove that (3) implies (1), let w € LY, ¢ € Ky, s, = T(0;), s(t,7) = 5.(1),
and note that

var (87, ¢) = vaxr/oo s(t, T)p(t)dt < /

-0

o

(varstt,7)) 1ol dt < lslly s 161 -

From Theorem 3.7 and Lemma, 5.2,

o0

(T(w), ¢) = / W) (T(5,), §) dr

— 00

-~/ ()-a—<sf,¢>ch
—/ u(r)d (5., ),

(T'(w), 9} < [lufl var (se,0) < lullog Islly gy N, -

Therefore,

1Tl = sup KT, @) < o Isllypy
T

Finally, we prove that (1) implies (2). Let ¢, ¢, € Ki, and let ¢ € Ky be given by
W(t, 7) = ¢1(t)dy(7). From Lemma, 5.2,

oo

(5.4 (TEy ) = [ (T8 6x(r)dr
= [ M@ty

— [T (& [ stennoa) otriar
= " ma( [ e T>¢1<t>dt)
(i)

- [ i [ (s ()l
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From linearity and continuity of the functionals in (5.4) and from [6, p. 65], (5.4)
holds for any ¥ € K,. Thus Theorem 2.2(1) implies

Os
{T(6)} = —5. € DUBV. O

We now examine a certain extension of the operator T and its relation to T..
Consider the closure L§°® of LY C L. It is easy to show that L§° is a closed proper
subspace of L* and

( b
Lg = ifeL‘x’[ €ss sup lf(t)(——»()asn—%oo}.

te(—o0,—n|

If T is stable, T' extends uniquely to a continuous linear operator Ty : L§® — L§°.
This extension can be taken further.

THEOREM 5.4. Suppose T : K{, — K|, is a BIBO stable generalized integral
operator, s{-, ) = T(8;), and §,(7) = s(t,7). Let T, : L*™® — L™ be the continuous
linear operator defined by

Then
(1) Te(u) = To(u) for all u € L,
(2) T. is the adjoint of Ts.
Proof. (1) Let uw € LY, ¢ € K. From Lemma 5.2,

<ﬂ%@=/mMﬂﬂ@mM

i
i
3
=4
£
2
=
>
2
s
au
ﬂ

Since ¢ is arbitrary,
wan=~/'uwmah>

-

a.e. Since L5 is dense in L§°, the result follows.
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(2) Let ¢ € L' and v € L°°. From Lemma 5.2,

(T (u), ) = / T L) 0)é)de

- / ” / " )bt sy (r)dt
= _./ d/ s(t, 7)o
=~/_mu<f>(dT/_oo s(t, 7)ot )dt)d

-/ Z u(r )T (6)(r)dr
= <u, Te(¢)> .o

To conclude, we give several equivalent expressions for the “gain” of a BIBO
stable linear operator.

THEOREM 5.5. For any BIBO stable generalized integral operator T Ki,
Ki,,

sup | T(u)ll,, = Sup, 17e (@)l

u€LT
llull =1 flull =1
(5.5) . .
= sup 1. My = TG -
¢eL?
lioll, =1

Proof. Let v € L, |u]lec = 1,0,(7) = v(7)8(7 + n), and € > 0. From Theorem
5.4, for a.e. t there exists N < oo such that n > N implies

‘/ )| < [_oo [v(T)]{ds:(7)] < Tga_rns(t,fr) <e.

T()lloo 2 1T (wn)lloo 2 IT(va)(t)] > [Te(v)(8)] — &

Hence,

sup
u€LY
flull oo =1

Since v, t, € are arbitrary,

sup [ T(u)llo > sup esssup(|Te(u)(t)] —€) = sup [Te(u)],
weLyP >0 t weL™

flufl =1 ||$ﬁL:1 flull o =1

The second equality in (5.5) follows from Theorem 5.4(2). For the third equal-
ity, set

s(t,7) = T(6,)(t).
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From Lemma 5.2,

@) =5 [ st nst

for every T, and

[z, = [ ‘% | stenoa

00
From [7, Theorem 2.3.9],

dr = var /00 s(t, T)o(t)dt.

sup ijﬂ((b)”l = ||sllypy -
¢cL
loll =1

The last equality in (5.5) follows from Theorems 3.7 and 4.3. 0
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