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1. INTRODUCTION

The theory of state-space realizations for strictly proper rational matrices
has been thoroughly studied. More recently, techniques for handling improper
transfer matrices have been devised (see [12}). In this paper we extend those
ideas to the case where a system is described by a convergent sequence of
rational matrices. A realization is then a sequence of state-space systéms.
The problem is made nontrivial by imposing the constraint that the matrix
entries of the realization sequence should also converge.

We consider seruences of rational r x m matrices Hk(s) which are convergent

in a natural sense to be described in detail in Section 2. We desire to
realize such sequences with corresponding sequences of state-space systems of
the form

EX = AX + Bu, y = Cx (1)
where E and A are n xn, B is nxm, C is r x n, and E may be singular. For
the sake of brevity, we identify the system (1) with the matrix 4-tuple
{E,A,B,C). The transfer matrix of (1) is

H(s) = C(sE - A)_IB - C-adj(sE - A)‘B

Fet(sE = A) (2)
The entries of H{s) are elements of R(s), the set of all rational functions

over R.

2. CONVERGENCE IN THE SPACE OF RATIONAL MATRICES

Definition 1 Suppose Pk: k=1,2,... and P are in R[s]. We say P, converges to

k
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p (Pk — P) if there is an integer g and sequences agk)

Pk(s) = aék)sq

— a; in R such that

a, ...
+ +as + ag

(k) (k) -
+ tag;s +ag, P(s) = aqs
In order to define convergence in R(s)rm, we view each rational function in

R(s) as an equivalence class determined by the relation % = % &« ad = bc where

a,b,c,d € R[s] and b,d # 0. To each element p € R{s] corresponds a unique

equivalence class [p]. When no confusion can arise, we simply write p instead

of [p].

Definition 2 Suppose hk; k =1,2,..., and h are in R(s). If there exist
sequences  ny — n and dk -+ d in R{s] such that nk/dk € [hk];
K=1,2,..., L {h}, then we say that the seguence {h, } converges to h

d =
(hk ~ h)} in R(s}.
We note that R[s] is a subset of R(s), so convergence in R[s] can be viewed
as a special case of convergence in R(s). We now address convergence in
rm
k(s) .

Definition 3 Suppose H

K k = 1,2,... and H are r x m rational matrices. We

say Hk — H in lR(s)rm if every component sequence hig) bl hij in R(s).

3. EXISTENCE OF REALIZATIONS OF (Hk}
Suppose we have a convergent sequence Hk — H in R[s]rm. We would like to
define {(Ek,Ak,Bk,Ck)} to be a realization sequence of (Hk) if (Ek,Ak,Bk.Ck) is

a realization of Hk for k = 1,2,... and if (Ek,Ak,Bk,Ck) converges to some

realization (E,A,B,C) of H. For technical reasons, we need to make a slightly
less restrictive definition.

Definition 4 Suppose H — H in R(s)rm. We call a sequence ((Ek,Ak.Bk,Ck)} a

k
realization of (Hk(s)) if there exists an integer K such that (Ek,Ak,Bk,Ck) is

n(2n+m+r)
a realization of Hk when k > K and if (Ek'Ak’Bk'Ck) -— (E,A,B,C) in R ,

where (E,A,B,C) is some realization of H. The integer n is called the
dimension of the realization.
The following theorem guarantees the existence of a realization sequence for

any convergent (Hk).

Theorem 1 Every convergent rational matrix sequence in R(s)rm has a
realization.
Sketch of Proof

First, we let I = ((E,A,B,C) € gR(2n+mer)

det(sE-A) # 0} and define a map
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CHERR — R(s]1™ x R[s] according to 6, (E.A,B,C) = (C-adj(sE-A)B,det(sE-A)).

We say a pair (N,d) € lR[s]rm x Rfs] 1is n-dimensional realizable if

{(N,d) € Gn(xn). We call the inverse image (E,A,B,C} of (N,d) with respect to
Gn a realization of (N,d). It is obvious that if (E,A,B,C) is a realization of

(N,d) then it is also a realization of the transfer matrix in the usual

|l

sense. We require a series of lemmas.

Lemma 1 The map Gn is open and continuocus.

Lemma 2 Let X and Y be topological spaces with X first countable, and let

Q: X — Y be an onto, open, and continuous map. For any convergent sequence

(yk) in Y with y_—y ey, there exist x e Q_l(yk); k =1,2,... and
X € Q_l(y) such that X X in X.
Lemma 3 If Hk — H, then there exist an integer n and pairs (Nk,dk):
Ny N
k=1,2,... and (N,d) € G (X ) such that — € [H ], - € [H], and
nn dk k d

(Nk,dk) — (N,d)}.

Now we suppose Hk—i H; then we <can find a convergent seqguence

(Nk,dk) — (N,d) in Gn(zn) with the properties in Lemma 3. It is easy to see
that zn is first countable. Restricting the range of Gn to Gn():n) and using
Lemmas 1 and 2, we conclude that, for the convergent sequence (Nk,dk), we can
always find a convergent sequence (Ek,Ak,Bk,Ck) — (E,A,B,C) in Zn such that

Gn(Ek'Ak'Bk'ck) = (Nk'dk) and Gn(E,A,B,C) = (N,d). Notice that (Ek.Ak,Bk,Ck)
N

is a realization of -—E € [H

3 k=1,2,..., and (E,A,B,C) is a realization of
k

Kl?
g € [H]. o
Theorem 1 says that we can always find a realization of {Hk) with some

dimension n. In the next section we address the problem of calculating the

minimal value of n.

4. MINIMAL REALIZATION OF (Hk}

First we recall a result about the minimal realization of rational matrices

in R(s)m by singular systems [12]: Let H = Hs + Hf, where Hs and Hf

respectively the strictly proper part and the polynomial part of H. Define the
é-degree of H according to &(H(s)) = u(Hs(s)) + u(éﬂf(-:-)), where v(-) is

are

McMillan degree [14]. It can be shown that &(H) is the degree of any minimal
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B
(=)
o0

realization of H (see [12]).

Definition 5 Suppose ((Ek'A Ck)) is an n-dimensional realization of a

' Bx’

convergent sequence {H If the dimension of every realization of (Hk) is no

k)'
less than n, we call ((Ek,Ak,Bk,Ck)) minimal and we define the J§-degree of (Hk)
according to 6{Hk) = n.

Note that there is a distinction between the é-degree of an individual

rational matrix H and a sequence (Hk). To continue our development, we need to

extend the definition of the characteristic polynomial to improper matrices.

Definition 6 For a rational matrix H = Hs + Hf we define the characteristic

polynomial (or simply C.P.) of H as that of Hs when Hs # 0 and as 1 when

Hs = 0. We denote the C.P. of H by A.

Now we need to consider the sequence of C.P.'s (Ak} corresponding to (Hk).

We first note that, from Definitions 1 and 3°', Hk = Nk/dk for some convergent

sequences (Nk) and (dk). where deg d_ < u for some integer u. Since the

k

strictly proper part of each H_ is of the form Hs /d where Ns is some

k = Nsk/% K

{not necessarily convergent) matrix sequence, it follows that deg Ak =<
pemin{r,m}. Let 7n = max{deg Ak). Then each Ak may be uniquely identified with

si*l
i-1

where i < 7. Clearly, the sequence {A

k

a point in the real projective space P according to si + a + oL, +

o, [0,...,0,1,a1-1,...,a

0 0]' k)

converges iff there exists a real sequence (ck) such that {ckAk} converges in

the sense of Definition 1. It is also important to note that convergence of

(Hk} and (Ak) does not necessarily imply that lim Ak is the C.P. of lim Hk.

We will see that convergence of the C.P. sequence plays an important role in

the minimal realization problem. We first treat the case where {Ak} converges.
In this case we can give a simple formula for calculating S(Hk).
Theorem 2  Suppose Hk — H. If {Hk) has convergent C.P. sequence (Ak) and
Ak — ¢ for some polynomial ¢, then the &-degree of (Hk) is

6(Hk) = max{o(Hf) + deg ¢, iig (G(ka) + deg Ak))

Here we assume ka is the polynomial part of Hk; k=0,1,2,...

We note that even though {Hk} is convergent, the corresponding C.P. sequence

may not converge.
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Theorem 3 If Hk ~- H, then there exist strictly increasing sequences
(k;a)); «=1,...,p of positive integers such that
1) (k;a)!a =1,...,p: j =1,2,...} = {1,2,3,...)
2) (k;a)lj =1,2,...} 0 (k§B) j=1.2,...} = ¢ when a = B.
3) {Hk(a)} has convergent C.P. sequence.

J
Theorem 3 shows that any convergent sequence (Hk) can be "decomposed” into

finitely subsequences, each with'convergent characteristic polynomial. Theorem

3 allows us to generalize Theorem 2. Suppose that (H ) has been decomposed

into p subsequences (Héa)); a =1,2,...,p with convergent C.P. sequences

A =o' a - 1,2,...0. Let ¢ = LM (™), where LOM denotes the
1<x<p

least common multiple. Theorem 4 requires the use of the polynomial sequences

((X) A‘((a) * * * (
d = ——¢ ; a =1,2,...,p and the sequence {d_ )} determined by d =d
k ¢(a) k k(@) J
J

«)

Theorem 4 Suppose H — H; then the 5-degree of (Hk} is given by

k
6{Hk)

max{5(H;)+deg ¢*,T1—m(a(ﬂfk)+deg d;)))
K00

max(d(Hf)+deg ¢*.EEE(6(Hféa))+deg déa));ISaSp}

(a)

(@) is the polynomial part of Hk .

where ka

5.MINIMALITY OF {(Ek,Ak.Bk.Ck))

In this section we describe a partial generalization of the standard result
from realization theory for fixed systems [12]) which says that a system
(E,A,B,C) is a minimal realization of some H(s) if and only if (E,A,B,C) is

controllable and observable. We assume that the C.P. of {Hk) converges and
that the system (1) is SISO. : The proof of our result is based on the following

lemma.

Lemma 4 Consider a sequence of scalar rational functions hk - h. If (hk) has

C.P. sequence Ak — &, then, for sufficiently large k,

6(hk) > 6(h) + deg ¢ — deg A = 6(hf) + deg ¢, where A is the C.P. of h.
Theorem 5 Consider a seguence Ek = (Ek,Ak.Bk.Ck) — (E,A,B,C) withm=1r =1

_ _ -1 :
and let hk(s) = Ck(sEk Ak) B If the C.P. of {hk) converges, then (fk} is

K
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minimal if and only if there exists a subsequence of {ék} consisting entirely

of controllable and observable systems.
The sufficiency part of Theorem 5 is obvious. Necessity is based on Lemma 4

used in conjunction with Theorem 2. Together these imply that 6(hk) = lim

ko
5(hk). It follows that there exists a subsequence of {hk } such that
J
G{hk) = B(hk ) for all j. Hence, the minimal realization of each hk has
j J
dimension 6(hk }, and so each corresponding state-space system is controllable
J

and observable,

7. CONCLUDING REMARKS

The basic problem discussed in this paper is the perturbation of a singular
system in the frequency domain and the relationship with its realization in the
time domain. We have shown that whether the characteristic polynomial sequence
corresponding to a sequence of rational matrices is convergent constitutes a
crucial piece of information in the minimal realization problem. We have
proved (Theorem 3) that, when the characteristic polynomial of the original
sequence is not convergent, we can decompose the original sequence into
finitely many subsequences in such a way that each subsequence has convergent
characteristic polynomial sequence. Our results indicate that the general
problem can be reduced to finitely manv subproblems each of which can be

handled using a simpler theory.
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