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In this paper we present a theory which characterizes LTI state-space realiza-
tions of perturbed rational transfer function matrices. Our approach is to model
system perturbations as sequences in the space of rational matrices. First, we
give a definition of convergence in the space of rational matrices which is motivated
by the kinds of parameter uncertainties occurring in many robust control problems.
A realization theory is then established under the constraint that the realization
of any convergent sequence of rational matrices should also be convergent. Next,
we consider the issue of minimality of realizations and propose a method for
calculating the dimension of a minimal realization of a given transfer matrix se-
quence. Finally, necessary and sufficient conditions are discussed under which a
sequence of state-space systems is a minimal realization and under which minimal
realizations of the same transfer function sequence are state-space equivalent.
Relationships with standard algebraic system theoretic results are discussed.
© 1994 Academic Press, Inc.

1. INTRODUCTION

The theory of state-space realizations for strictly proper rational matri-
ces has been thoroughly studied (e.g., see [16]). More recently, techniques
for handling improper transfer matrices have been devised (see [14]). In
this paper we extend those ideas to the perturbational case—i.e., where
a system is described by a convergent sequence of rational matrices (possi-
bly improper). A realization is then a sequence of (generalized) state-
space systems. The problem is made nontrivial by imposing the constraint
that the matrix entries of the realization sequence should also converge.
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Part of our motivation for this problem comes from the study of robust
control problems—specifically, from those dealing with order uncertainty
and singular perturbations. For example, the robustness problems ad-
dressed in [1-3] are based on singularly perturbed system models. Physical
systems are invariably subject to some variations in parameters, often
resulting in changes in model order. It is desirable, therefore, to design
compensators which meet performance criteria independent of system
perturbations. Many robust control theories (e.g., [4]) emphasize in-
put—-output performance characteristics. Qur intention is to develop some
fundamental tools for examining robustness problems associated with a
system'’s internal structural properties.

One way to approach this problem might be through the application of
algebraic system theory (see, e.g., [17]). In this setting, the transfer func-
tion sequence is viewed as a rational function over the ring ¢ of convergent
real sequences using pointwise operations. Unfortunately, we see that
existing results in algebraic realization theory apply to our case only
marginally. This is due to three key facts: (1) The ring ¢ is not an integral
domain. (2) Most results in algebraic realization theory deal only with the
case of proper transfer functions. (3) An abstract version of the Weierstrass
decomposition for matrix pencils over a ring does not vet exist. Neverthe-
less, our feeling is that the properties of sequences of transfer functions
are sufficiently important from the point of view of robust control theory
that they deserve separate treatment, not only for the sake of mimicking
standard results from algebraic theory, but also in order to obtain deeper
insight into the specific structure of realizations over this particular ring.

From an analytic perspective, considerable work dealing with perturba-
tions of rational matrices has appeared (¢.g., [4, 7-12]). In these papers
various rational matrix topologies have been proposed, motivated by a
variety of control problems. The closest of these to our work are [10-12],
where a singular perturbation theory for transfer functions is developed
and a specific form of realization is given. However, [10-12] do not explic-
itly address those problems dealing with the existence of realizations in
general and, in particular, the minimal realization of perturbed systems.
In [4] rational matrix convergence is characterized in terms of the *‘graph
metric”” which is used to address certain problems in local simultaneous
stabilization. It is easy to show that the graph metric induces a topology
which is very different from that corresponding to simple system parame-
ter convergence. The work of [7 and 9] also treats the problem of topologiz-
ing the set of rational matrices and is closely related to ours, but again
does not examine the realization problem. Our work is motivated solely
by realization and robustness issues; our constructions are designed to
yield the simplest definition of convergence corresponding to convergence
of system parameters.
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We are mainly concerned with the interplay between two types of LTI
system representations. First, let R(s) be the set of all rational functions
over R, and let R(s)™ be the set of r X m matrices over R(s). Next,
consider (generalized) state-space systems

Ex = Ax + Bu, y = Cx, €))

where E and A are n X n real matrices satisfying the standard regularity
assumption det(sE — A) # 0, Bisn X m, Cis r X n, and E may be
singular. For the sake of brevity, we identify the system (1) with the
matrix 4-tuple o = (E, A, B, C) € R"®**m+0_The transfer matrix of (1) is

_ C-adj(sE — A)- B
det(sk — A)

H(s) = CsE — A) € Ris)™.

~
no
~—

Throughout the paper we assume that the values of m and r are fixed; we
consider n to be a variable.

DerinITION 1.1. (1) A state-space system o € R™*+"+9 i5 said to
have dimension n. In this case, we write dim o = n.

(2) 1If a rational matrix H is of the form (2), we say that (E, A, B,
C) is a realization of H.

With regard to parts 1 and 2, a (nonperturbational) realization theory
already appears in [14]. We now summarize the main results of this theory.

THeEOREM 1.2 [14]. (1) Every rational matrix has a realization.

(2) The minimal dimension over all realizations of H, denoted u(-),
is W(H(s)) = v(H(s)) + v(1/5)H (1/5)), where v(-) is the MacMillan de-
gree, and H; and H; are the unique strictly proper rational matrix and
the polynomial matrix, respectively, satisfying H = H; + H;.

(3) A 4-tuple o is a minimal realization of some rational matrix H
if and only if o is controllable and observable (as defined in [8]).

@ Ifo, = (E,, A, By, Cy) and oy = (E,, A,, B,, Cy) are minimal
realizations of the same rational matrix, there exist nonsingular matrices
M andN Such that E2 = ME]N, Az = MA]N, Bz = MB], and C2 = C]N.

The results of our present work may be considered to be a generalization
of Theorem 1.2 to the case of rational matrix sequences {H,}.

In Section 2 we choose a natural definition for convergence of rational
matrices. Working from this definition, we consider sequences H, — H
in R(s)™ and attempt to characterize those sequences {o} in R"@n+m+n
such that (1) o, converges to some ¢ in the matrix sense, (2) oy is a
realization of H, for sufficiently large £, and (3) o is a realization of H.
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We view this approach as a way of modeling the possible perturbations
in the internal structure of a system corresponding to a given perturbation
in the input—output description {H,}.

In our realization theory, we see that Theorem 1.2 part 1, remains true

\ 'S
(Section 5). Corresponding to the expression for pw inpart 2, in Section 6
v t=3 v [2ad 1 4

we define and give an explicit expression for a degree function which
equals the dimension of all ‘‘minimal realizations” of a sequence of trans-

fer matrices. It is shown that propertics 3 and 4 do not hold as stated for

sequences; however, we discuss important special cases where similar
statements do hold. In Sections 5 and 6 we also discuss the connections
between our work and the standard algebraic realization theory (see {17)).

2. CONVERGENCE IN THE SPACE OF RATIONAL MATRICES

We first consider the problem of defining a topology on R(s) and later
on RE)Y™. Convergence in R(s) is defined in the most natural way such
that small perturbations in R(s) correspond to small perturbations in the
coefficients of numerator and denominator of the rational function. To
begin, we must define convergence in the set R{s] of all polynomials over
R. Suppose P, k = 1, 2, ..., and P are polynomials in R[s].

DEeFINITION 2.1.  We say P, converges to P if there exists an integer
g <osuchthatdeg P, <gq, k= 1,2, ...,degP =gq,and g, — a;, i =
0, ..., q, where Pi(s) = aus? + - + ays + ag, k = 1,2, ..., and
P(s) = aps? + -+ + a5 + ag

Remarks. (1) If weregard P, € Rls], k = 1,2, - - -, as functions over
€, we might be tempted to define P, — P when lim,_,.. Pi(s) = P(s) for
any s € C. But we note that in this definition, deg P, may not be bounded.
For example, let Py(s) = (1/k)s* + 1. This observation brings us to a
crossroads in the theory: If we were to allow convergent polynomial
sequences to have unbounded degree, the same would be true for se-
quences of rational functions. This would result in an undesirable situation
where state-space realizations could have unbounded dimension. Hence,
we insist on bounded degree based both on physical intuition and on a
desire for mathematical elegance.

(2) Definition 2.1 is equivalent to the following two conditions:
(a) {deg Pk = 1, 2, - -} is bounded.
(b) lim,. Pls) = P(s) for every s € C.
Indeed, the necessity of (a) and (b} is obvious. On the other hand, if {P,}

satisfies (a), P,(s) and P(s) can be written as in Definition 2.1. Choose
g + 1 distinct complex numbers {s,, ..., s,,,}. Then, from (b), V¢, —
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V¢, where
57 sy 1 Qg a,
57 K} 1 :
2 2
V=9. . = = .
) g/( ay > §k a,
Sqer 0 Sger Qo aq

We know that the Vandermonde matrix V satisfies det V# O as long as
s; # 8;, i # j; therefore V! exists and &, — € as k — o,

(3) We can define a topology on R[s] which is consistent with our
notion of convergence in Definition 2.1. To do so, identify every element
in R[s] with an element in R* according to

pmsm t o pys +17()<—“>(p0,1)1, "',pm,0,0,0,"'),
and let

(‘)Rerl = {(po,pla”"pm’oyo7“')ERWIPIERai: 0’1’25...am}-

Then

is the set of all polynomials. On ®,, we take identification topology (e.g.,
see [19, p. 120]) with respect to the bijections fi: R¥— R, defined by f,(a,,
ay, ~c,a) = (ay, ay, -, 44, 0, - ¢). Thatis, aset U = {(a,, -+, a,, 0,
)| (a;, -+, @) € V}is open in R if and only if V is open in R*. On ®
we impose the inductive limit topology [19, p. 420] with respect to the
R,—i.e., we impose on R the finest topology which makes the natural
imbeddings %, C % continuous. It is routine to prove that P, — P in the
sense of Definition 2.1 if and only if P, converges to P in .

(4) ltis shownin [6, Lemma 4.3] that, if {P,} is convergent in R[s],
then there exist convergent real sequences {a;}, {8;}, and {y,}, with a; —

Ty 0 cuch that
0 and lim v 7 O, such that

Py(s) = YA»H (ays — 1) H (s — By 3)

In particular, if the roots of p, are bounded, then deg p, = deg lim P,.
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In order to define convergence in R(s), we adopt a standard quotient
space construction over Ris} x (R[s] — {0}) (e.g., see [18, p. 136]) and
identify each rational function with a unique equivalence class under the
relation (a, b) = (¢, d) © ad = bc. We use the expression a/b to denote
both a rational function and its corresponding equivalence class in R[s] X
(R[s] — {0}). Note that a similar construction may be employed in identi-
fying rational matrices N/d € R"™(s) with equivalence classes of pairs (N,
d) € RisI™ x (R[s] — {0}).

Adopting ordinary quotient set topology on R(s), we arrive at the follow-
ing definition.

DEFINITION 2.2.  Suppose iy, k = 1, 2, ..., and k are in R(s). We say
hy converges to h in R(s), if there exist n, — n and d;, — d in R[s], with
1 5 RV - U TS I F L. L _ 1A R I8 I |
ag, a 7 U, such tnat n,jd, = g, k = 1, 2, ..., and nid = n.

Along similar lines, we now give three alternative definitions for conver-
gence in R(s)"™.

Mo orarrrrany s Mo Cuirimmnnon LT L - 1 N ciomel I nan 20 N 222 satinnal

IJCCAIINLLIUIN 4.0, DUppuUsSe llk, K o— 1y &Ly ooy Al L1 AT T A ITL 1 AUIULLIAL
matrices with components 4y and h;, respectively. We say H, converges
to H in R(s)™ if hy — hy; in R(s) as k — .

DEFINITION 2.3'. Suppose H,; k = 1,2, -, and H are r X m rational
matrices. We say H, converges to H in R(s)™ if there exist N, — N in
R{s}™ and d, — d in R[s] such that N,/d, = H,; k = 1,2, ..., and
N/d = H. (Here we assume product topology on R[{s}™ and that the quo-
tient space constructions above are applied componentwise on R[s}™ X

(RLs] — {0h.)

DEefFINITION 2.3". We say H, converges to H in R(s)™ if there exist
Ny — N in R{s]”™ and D, — D in R{s]™ with D, and D nonsingular such
that NND, ' = H; k=1,2,...,and ND™' = H.

Remarks. (1) It is easy to show that Definitions 2.3, 2.3’, and 2.3”
are equivalent. A fourth alternative definition is the same as 2.3” except
using left instead of right factorizations.

(2) Note that a sequence which converges in the sense of Definition
2.3 also converges in identification topology with respect to the map #:
Rr@rtm+n 5 R(s)™ defined by

C - adj(sk —A)B

H(E, 4, B, €) = =5 lF2 =%,

where (E, A, B, C) € R*®*m*7_ The construction of the topology on
R(s)™ shows that ¥ is continuous.
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3) IfH,— Hand G,— G,then H, + G,— H + G and H,G,— HG;
more generally, R(s)™ is a topological ring with respect to identification
topology on R(s) and the corresponding product topology on R(s)™. In
particular, relative topology on the subgroup of polynomial matrices R[s]™
is the same as product topology with respect to Definition 2.1. Note that
Rls]™ is closed in R(s)™.

We show in Section S that our definition of convergence is the ‘‘right”’
definition for the realization problem, since a sequence in R(s)” converges
in our sense if and only if it admits a convergent sequence of state-space
realizations. One view of the results of this paper is that they characterize
local properties of the map 9.

3. TIME-SCALE DECOMPOSITION OF TRANSFER MATRIX SEQUENCES

Clearly, any rational matrix H can be uniquely expressed as H =
H + Hj, where H is strictly proper and H;is a polynomial matrix. We
now generalize the decomposition to the sequential case; this must be
carried out in a way that preserves convergence.

DEerFINITION 3.1. (1) We say a convergent sequence {H,} in R(s)™ is
a slow sequence, it H is strictly proper for every k and there exists a
bounded region A C C such that all poles of each H, lie in A.

(2) A convergent sequence {H,} is called a fast sequence if for every
M < = there exists a K < o such that k£ > K implies that each pole p of
H, satisfies [p| > M (all poles tend to infinity).

Remarks. (1) The set of all slow sequences in R(s)"™ forms a proper
subspace of the real vector space of all convergent sequences in R(s)™.
The same statement holds for fast sequences.

(2) Any slow sequence can be expressed as Hy = N,/d, where
d, is convergent and monic for every k and deg N, < deg d,, where
deg N = max,;;{deg n;} for any polynomial matrix N. Thus deg lim
N; < deg lim d,. This shows that the limit of every siow sequence is
strictly proper.

(3) Since the limit of any fast sequence can have no finite poles,
such a limit must be a polynomial matrix.

(4) Every convergent sequence of polynomial matrices is a fast se-
quence.

(5) If a sequence is both slow and fast, it must be strictly proper
and have no poles whatsoever for large k; hence, the sequence must be
identically zero for large k.
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(6) A sequence of matrices {H,} is slow (fast) if and only if each
component sequence {/;} is slow (fast).

DEfFINITION3.2. (1) Wesay H, = H, + Hyisatime-scale decompo-
sition of {H;} when {H} and {H,} are slow and fast sequences, respec-
tively.

(2) Inatime-scale decomposition, { H,,} and { H} are calied the slow
part and the fast part of {H,}.

Note that from Remarks 2 and 3 above, if H, = H; + Hpg is a time-
scale decomposition of {H,}, then H; — H, and H, — H;, where H, and
H, are the strictly proper part and the polynomlal part of H = hm H,.
Theorem 3.3 tells us that every convergent sequence {H,} has an essentially
unique time-scale decomposition.

THEOREM 3.3. (1) Forevery convergent sequence {Hyin R(s)™, there
exist a slow sequence {Hy} and a fast sequence {Hpy} such that H, =
Hy + kafor every k.

2) If{H\,‘} and {H/A} are slow and fast sequences, respectively, and
H = H, + Hﬂfor every k, then Hy, = H, and Hy = H,Afor sufficiently
large k.

need only treat the case r = m = 1; the multivariable
ase can then be hd»dl_ d componentwise. If h, = h € R(ﬂ we can find

1 and d;, — d, with n,/d, = h, and n/d = h. Since d;, — d, from (3)
we can write d, = kaskd;k~ where d(s) = s* + b, _;s*7" + -+ + by and
da(s) = aus’ +a, ;8" '+ -+ ays + 1, with each {b,} convergent, y;
—~ y # 0, and ay; — 0 as k — = Let m(s) = z,8% + ... +
18 + 2o, and let g = max{y, p — p}. We show that there exist conver-
gent polynomial sequences ny = x, ;7' + o+ oxps 4 oxg
and ng = y,_ 877" + 0+ yus + yy such that m/dy = ngldy +
ngldy. Equivalently, we need to show that

l

vngdp + npdy) = ny. )

Note that Eq. (4) may be written in matrix form

A By :
[ 1k u][n] 2 5)
Aok Boxd Lk

where
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o
ay 1
o P
L‘%ZkJ K auk .. ' i
) Ay
Lo 0 0 -
by
By .
[% ] S o
U by 1i :
) .
bp.—]l\
L [
20k
Xok Yok :
X, = . , = . , =1 "1
k ) : Yk : k Zok
L] RCRES | 0

with o, Aaps Biys By, and z, having dimensions w X u, uw X g, g X q,
and (u + q) X 1, respectively. Also note that o, — vi,, By, — vI, +
M, where M is nilpotent and upper triangular, and #,, — 0 as k — o,
Hence, there exists a K < o« such that (5) has a unique solution when
k> K. For k = K, let h be any strictly proper rational function and let
hfk - hk - hsk'

(2) Wehave H;, + H, = H, + H,;( for sufficiently large k. Hence,
Hy — Ay = Hy — Hy. (6)

But the left side of (6) is slow, and the right side is fast. Hence, both sides
are identically zero for large k. |

To conclude this section, we note that a time-scale decomposition of
any transfer matrix sequence of the form H, = C(sE, — A,)”'B,, where
{(E., Ay, By, Cp} is convergent in R*@"*7+9 and det(s - lim E, — lim
Ay # 0, can be achieved by invoking the perturbational form of the
classical Weierstrass decomposition for matrix pencils as developed in
[7]. Indeed, from {7, p. 147], there exist convergent nonsingular matrix
sequences {M,} and {N,}, with lim M, and lim N, nonsingular, such that
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MEN, [1 0} MAN, {AS“ O] %)
BNy = ’ MV = ’
0 Ag 0 I

where lim A, is nilpotent. Let
I"B\ky 1
[ kJ = MB,. [Cy Cul=CWN. 8)
B,

Then
H(s) = Cy(sl — A,y 'By + CplsAp — I)"Bﬂ. 9)
From Definition 3.1 it is clear that

Hy(s) = Cylsl — Ay) " 'By (10)

Hy(s) = CplsAy — )7 'By, (11)
are slow and fast sequences, respectively. Hence, (9) is a time-scale de-
composition of {H,}.

4. THE CHARACTERISTIC POLYNOMIAL SEQUENCE

In this section we investigate several useful properties of the sequence
of characteristic polynomials corresponding to a convergent sequence {H,}
in R(s)™. We first extend the conventional definition of the characteristic
polynomial to improper transfer matrices. Recall that the characteristic
polynomial A of a strictly proper rational matrix H, is defined as the least
common monic denominator of all minors of H,.

Y _ XF 1 XF e oo
DErFINITION 4.1. If H is a rational matrix with H = lt + HflUl Somie

strictly proper H, and polynomial matrix Hy, the characterestzc polynomial
A of H is defined as the characteristic polynomial of H,.

Consider the sequence of characteristic polynomials {A,} corresponding
to {H,;}. Since H, = N,/d,, it follows that A, divides d™"" for each k;
thus, boundedness of {deg d,} ensures boundedness of {deg A,}. Let 5 =
lim{deg A}, and note that deg A, = 7 for sufficiently large k. For all such
k, A, can thus be uniquely identified with a point (4,) in the real projective
space P7 (see, e.g., [20]) according to

S+ s+ L+ (0,...,0, 1, 0y, ..., ap) € R
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In fact, there is a one-to-one correspondence between P and the set of
monic polynomials A with deg A = 7. These observations lead to the
following definition.

DEFINITION 4.2. Let {H,} be any convergent sequence in R(s)™, and
let A, be the characteristic polynomial of Hy. Set

_{<Ak>» deg Ay =m
Py, degAc>

The sequence {p,} is called the characteristic polynomial (CP) of {H,}.

sequence {y,} such that {y,A;} converges to a non-zero limit A € R[s]. In
this case, lim p, = (A). We now present several pathological situations
that can arise in dealing with the CP.

Byamnrin 42 (1Y Th 1
LXAMPLE 4.5, (1} 1n¢c fG”G‘v‘v’lﬂg cxamp

is convergent, the corresponding CP may not converge. Consider the se-
quence

(s +2) keven
(s + D(s + 2+ U/k)
Hk(s) = (S + 3) ’
kodd

(s + D(s + 3+ 1/k)’

and let H(s) = 1/(s + 1). We may write H, = N,/d;, where N, = (s +
2)(s + 3) and

[(s + 1)(s +2 4 %)(s +3), keven
dk =

L(s + D(s + 2)<s + 3+ ), kodd.

x|

Thus H, — H, but

(s + 1)<s + 2+ %), keven

As) = 1

(s + 1)<s +3 +Z>’ kodd
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Clearly, {p,} is not convergent. Note, however, that {H,} can be divided
into two subsequences with convergent CP’s according to H{Y = H,,_,
and HZZ) = Hz/‘.,

(2) 1In some cases, {p,} may converge even though {A,} does not.
Consider the rational sequence

1
((H/kys + (s +2)°

H,(s) =

In this case, {H,} has the CP determined by A(s) = (s + k)(s + 2), but
{p} converges, since (1/k)A(s) = (1/k)s + ks + 2} —= s + 2.

(3) Finally, we note that convergence of {p,} (or even {A.}) does
not guarantee that lim A, is the characteristic polynomial of lim H,. For
example, let

s+ 2

(s + I)(s +2+ %)

H(s) =

Then A(s) = (s + l)(s + 2+ %) - {s + D(s + 2), but H(s) —
1

s+ 17

Next we examine some basic properties of the CP with respect to the
time-scale decomposition. First we need a simple result for individual
systems.

LEMMA4.4. Suppose H = H, + H,,where H, and H, have no common
poles, and let A, A, and A, be the characteristic polynomials of H, H,,
and H,, respectively. Then A = A\A,.

Proof. From the definition of the CP we can assume without loss of
generality that H, and H, are strictly proper. Suppose (4,, B, C) and
(A, B,, C,) are minimal realizations of H,; and H,; then A(s) = det(sl —
A). If we let

A~[A‘ 0] B—[B‘] Cc=[C, C)
1o Al T LB, S

then (A, B, C) is a minimal realization of H with CP

A(s) = det(s] — A) det(s] — A,). |
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In particular, for any time-scale decomposition, Lemma 4.4 implies
that, when k is sufficiently large, we have

Ak = AxkAfk’ (12)

where A, Ay, and Ay are the characteristic polynomials of Hy, Hy, and
Hy, respectively.

LEMMA 4.5, Let H, = Hy + Hy be a time-scale decomposition.
(1) If A, is the characteristic polynomial of Hy and A € R[s] is
monic, then (Ay) — (A} if and only if Ay, — A.
) If {put is the CP of Hy, then pg — (1).
(3) The CP of {H,} is convergent if and only if the CP of {H} is
convergent. When the two CP’s converge, their limits coincide.

Proof. (1) Sufficiency is obvious. To show necessity, observe that
there must exist a real sequence {y,} such that y,A;, — A and that {A,}
has bounded roots. From (3), {y,} converges. Since A, and A are
monic, y; = 1.

(2) We have p; = (Ap), where

A, = H(s + N, Hp is not a polynomial matrix.
f — i

1, Hj is a polynomial matrix.

Here the A, satisfy the property that, for every M < o, there exists a
K < o such that |\, > M for each i and each k > K. Let

Then yAg — 1 in Rls].
(3) The result follows immediately from (12) and part 2. |

The final result of this section focuses on the observation made in
Example 4.3, part 1, that the CP of a sequence {H,} in R™(s) which is not
convergent can sometimes be decomposed into convergent subsequences.
We can in fact demonstrate that a finite decomposition of this sort can
always be achieved.

THEOREM 4.6. If H,— H, then {p,} has finitely many limit points.
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Proof. From Lemma 4.5, part 3, we need only consider the case where
{H}} is a slow sequence. Let H; = N,/d, and H = N/d. From the defini-
tion of the characteristic polynomlal A, divides d,j“‘“ tnm} for each k. But
dpitrmi—= gmislemt g the umqut, monic representation of each limit point
of {p,} must dmde (minrant The result then follows from the fact that any

polynomial over R has finitely many monic divisors. |

CoroLLARY 4.7. If H, — H, then there exist finitely many strictly
increasing sequences {ki}, i = 1, ..., w, of positive integers such that
(O {Ki=1,2,...mj=12.}5=1{,23, .1}
Q@ (k=12 .0n{kli=12 ..} =¢whenp+#gq,
(3) each {H,(}f} has convergent CP.
Proof. From Theorem 4.6, there are only finitely many limit points
ol ..., p" € P of {p,}. Since P" is a compact Hausdorff space, each open

subset U of P7 satisfying {p', ..., p™} C U contains a tail of {p,}. Indeed,
otherwise there would exist a subsequence of {p,} with no limit point,

contradicting compactness of P7. Let U/, ..., U, be nonintersecting neigh-
borhoods of p!, ..., p7, respectively; then there exists a K < o« such that
{p CUU, fork > K. Letk! = j;j = 1, ..., K. The remaining k; may then
be defined iteratively ace ordmg to ki = min({k}pk € U} - ”“" <Jh.
If V; C U, is another neighborhood of p;, then by ¢ ompactness of [P’"
there must be a tail of the subsequence {pk}f}‘ contained in V;; hence,
pi—>p. 8

S. EXISTENCE OF REALIZATIONS

We are now ready to formally define realizations of a given transfer
matrix sequence {H,} and discuss their existence. We base our definition
of a realization of {H,} on the standard definition of a realization of a
single rational matrix H as in Theorem 1.2.

DerFINITION 5.1. (1) Suppose {H,} converges in R(s)". We say a
sequence {0} in R"®"*"*1 is a realization of {H,}, if there exists an integer
K and a o € R""*"*1 such that oy is a realization of H, when k > K and
o= o in Rn(2n+m+r).

(2) A realization {0} in R*@"+m*0 ig said to have dimension n.
Note that the dimension of a realization {o} is given simply by dim o
for any k. If H,— H, then continuity of # implies that o is a realization

of H in the conventional sense. We show that there exists a realization
for any convergent sequence {H,}; this generalizes part 1 of Theorem 1.2
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to sequences and demonstrates that the definition of convergence in R(s)™

outlined in Section 2 is the correct one for our purposes.

To simplify subsequent discussion, we make use of the mapping %:
R(s)™ — R(s)™ defined by 9(H)(s) = —(1/s)H(1/s). It is easy to see
that % is an isomorphism on R(s)™ and that 4~ = 4. Some elementary
properties of ¢ follow.

LEMMA 5.2, Let H € R(s)™, and let {H,} be convergent in R(s)™.
(1) (E, A, B, C) is a realization of H if and only if (A, E, B, C)isa
realization of 4(H).
(2) w(H) = u(8(H)).
(3) If the characteristic polynomial of H is A(s) = s" + Moy S" 1+
o+ my, then the characteristic polynomial of ‘4(H) is 7(s) = v{nes” +
ot s + 1) for some y # 0.

Proof. (1) Suppose H(s) = C(sE — A)~'B. Then %H)(s) =
—(1/)C(1/)E — A)"'B = C(sA — E)'B.

(2) From part 1, if H has a realization of degree n, then so does
%(H). The converse follows from 4($H)) = H.

_ (3) Let (£, A, B, C) be a minimum realization of H; then (A, E, B,
C) is a minimal realization of 9(H). Hence, A(s) = v, det(sE — A) for
some vy, # 0 (for details, see [14]), and

7(s) = v, det(sA — E) = y,(—s)" det <£E - A)

v ln 1n~l
= LL(— W = + — 4o 4
Y <<S) n”"(S) m)
—_ n Y2 n
= (=1 s+t s+ D). |
14! [ ]

LEMMA 5.3, If{H,}is a fast sequence, then {G(H )} is a slow sequence.
Proof. Since all poles of H, tend to infinity, we can write

Nk(s)

Hi = 2 ays = 1)

where {N,} is convergent and each a;— 0 as k — «. Let ¢ = max,{deg
nx, p — 1}. Then

o SN(s)
G(H)(s) = (1) sTPHI(s — )
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Note that s?N,(1/s) is a polynomial matrix, each of whose elements has
degree at most g. Clearly, ‘4(H,) has bounded poles, and the demoninator
of 4(H,) has degree g + 1, so ‘9(H,) has bounded poles, and the denomina-
tor of G(H,) is strictly proper. |

Now consider a time-scale decomposition /, = H,; + Hj, of an arbitrary
{H,} in R(s)™. Suppose {H 1 and {%4(H )} have realizations of the form

1ER S INEL callla

{d, Ay, By, C)} and {(1 A,A, By, C,k)} Then each Hy, = 4(%4(Hp)) has
(Ap, I, By, Cy) as one of its realizations. Defining

E‘[I 0] A—[A“" 0} B~[B“*] Cp = [Cyy Cal
bk 0 Aﬂ\ s A 0 I ’ [ Bfk ’ kT sk “fkds

it is easy to check that {(E,, A, B, C},)} is a realization of {H,}. Therefore,
we only need to prove existence of realizations for slow sequences.

THEOREM 5.4. Every slow sequence has a realization of the form’
{(17 Ar’(v Bk! C/()}'

Proof. First we treat thecaser = m = 1. Let H, = Nk/dk, where {N,}
and {d,} are convergent in R[s]. Then d; = 59 + o, ;597" + -+« + o, and
Ny = B as?h+ Buays? 2+ oo + By, where' oy and By, converge as
k — o, To obtain a reallzatlon of {H,} of the desired form, set

l’ 0. 1. —l I‘O—‘
Ak — ' ‘0 ’ , Bk = 0 s
TOy  TOoy Tt T4 1

Ce= 1B Bu - Bq~1,k]~

Now we consider the general case. By the definition of convergence in
R(s)™, every component sequence {h;} is convergent. Suppose {(I,
A{, B{, C})} is a realization of {h;}. Let

Al = diag{A}]j=1,2,...,m}, B = diag{B{|j= 1,2, -, m},

and
A, =diag{Aili=1,2,...,r}, B,=| |,

C, = diag{Cili=1,2,---, 1}
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A simple calculation verifies that {(I, A,, B,, C)} is a realization
of {H,}. |

Combining the time-scale decomposition with Lemma 5.3 and Theorem
5.4, we arrive at the following result.

COROLLARY 5.5. Every convergent sequence in R(s)™ has a real-
ization.

Theorem 5.4 (but not Corollary 5.5) may also be proven in an abstract
algebraic framework as outlined in [17, Chap. 4]. Briefly, consider the
commutative ring ¢ of convergent sequences in R using pointwise opera-
tions, and let the set of » X m proper rational real matrices be denoted
by R,(s)™. A convergent sequence {H,} in R (s)™ may then be viewed
as a formal power series over the ring of r X m matrices with elements
in ¢. Indeed, we may expand each element of each H, about s = , yielding
the series

H=Y ({-) Hy, (13)

i=1

where the sequences {H,} are convergent. From this point there are two
ways to proceed. First, one can prove realizability by constructing a
certain infinite-dimensional Hankel matrix from the H;,. It must then be
shown that the span of the columns of the Hankel matrix is a finitely
generated module over ¢. A second approach is to show that the formal
power series (13) is “‘rational’’ in a certain algebraic sense. This immedi-
ately guarantees realizability. Both conditions can be demonstrated in our
framework fairly easily; however, our proof of Theorem 5.4 is more direct
and is sufficient for our purposes.

6. MINIMALITY

In section 5 we showed that every convergent sequence {H,} in R(s)™
has a convergent realization {o,}. In this section, we explore the issue of
minimality of a realization.

DeFINITION 6.1. (1) If n is the smallest integer such that {H,} has a
realization of dimension n, and {o,} is a realization of {H,} with dim
o, = n, then we say {o}} is a minimal realization of {H,}.

(2) Ifasequence of state-space systems {0} is a minimal realization
of its transfer matrix sequence, we say {0} is minimal.

Obviously, all minimal realizations of {H;} have the same dimension.
This fact enables us to define a degree function & on the set of convergent
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rational matrix sequences by setting 8{H,} equal to the dimension of any
minimal realization of {H,}. In this section we develop a simple expression
for 8{H,} for slow sequences and then extent it to the general case. Next,
we examine a natural conjecture for determining whether a sequence {o,}
is minimal and relate minimal realizations of the same {H,} in a manner
analogous to Theorem 1.2, part 4. Finally, we relate our results to the
realization theory outlined in [17] for algebraic systems over the ring c.
In our development it is helpful to exploit various properties of the

mapping which takes each state-space system into a particular choice of
numerator and denominator of its transfer function. Specifically, define
[, Retmin — Ruom+D according to I,(A, B, C) = (C-adj(s] — A)B,
det(sl — A)).

Here we have identified %, as defined in Remark 3 after Definition 2.1,
with R*. Note that T, is continuous; if I' (A, B, C) = (N, d), then (, A,
B, C) is a realization of N/d. Also note the distinction between T', and ¥,
as defined in Section 2. We denote Im I', = T, (R 1),

The following series of lemmas leads us to the first main thorem of
this section.

LemMMA 6.2.  Consider any pair (N, d) where d is monic, deg d = n,
and Nid is strictly proper with characteristic polynomial A. Then

(N, dy€ImVl,if and only if A divides d.

Proof (Sufficient). Suppose d(s) = A(s) [1%, (s + 8,), and let (I, A,
B, C) be a minimal realization of N/d. Define

A*—{A 0] B*w[B} C*=[C 0
Lo =P Lo’ =1e 0.

where

—Bi
B

_Bp

Then det(s] — A*) = det(s] — A) det(s] — ) = A(s) I17-1 (s + By) = d(s).
Since C*(sI — A*)™'B* = C(sI] — A)'B = N(s)/d(s), C* adj(s] —
A*)B* = det(SI — A*)(N(s)/d(s) = N(s). Hence, (N, d) =T, (A*, B*, C*).

(Necessary) Suppose (N, d) = I' (A, B, C); then (I, A, B, O) is a
realization of N/d. From [16, Theorems 5-18], we can find a similarity
transformation 7 such that
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All A12 Al3 Bl
TAT=| 0 Ay Ayl|, T'B=|B|, cT=00 ¢, C],
0 0 Ay 0

where (A,,, B,, C,) is a minimal realization of N/d. Note that det(s/ —
Ay) = A(s). Thus d(s) = det(s] = A) = det(s] — A,;) det(s] — As)
Als). 1

From Corollary 4.7, {H,} can be decomposed into 7 sequences {H{},
i=1,2, .., m, where we define H) = H K- Each sequence has convergent
CP satisfymg APy — (AD), i = 1,2, ..., 'm, where A? is monic. If {Hk} is
slow, then, from Lemma 4.5, part 1, A};) — AD Let A = LCM {A®, .
A™}, where LCM denotes the least common multiple. Also define.

AP = Ay i=1,2,..,m. (14)

A(l) ?

Note that each A{ is a polynomial and that, if {H,} is slow, A{) — A.

LemMA 6.3.  Let {H,} be a slow sequence with H, — H, and suppose
h nas cnaracterlsnc poty.wmlat A l/’l(_’l’l L\ all)laes A

Proof. According to Corollary 4.7, {H,} can be decomposed into 7
subsequences with convergent CP’s A{? — A? If A divides A? for each
i, then A divides A. Hence, it suffices to treat the case where {H,} has
convergent CP A, — A.

Let p = min {r, m}, and consider the sequence {H,} of 1 x 2., 6]
rational matrices, each H, consisting of the minors of H, of all orders.
Obviously, H,— H, where H is defined similarly. It follows from elemen-
tary arguments that H, has characteristic polynomial A, (same as H,) and
that, for any polynomial q, gH, is a polynomial matrix if and only if A,
divides g. In particular, A, H, is a polynomial matrix. Since R[sV is closed
in R(s)/ for any j, AH is a polynomial matrix. Thus, the characteristic
polynomial A of H (and H) divides A. 1|

LEMMA 6.4. T, is an open mapping.

Proof. Note that I, is multilinear; thus, it is a composition of functions
on Euclidean spaces R? of the form f(x,, ..., x,) = *x;x; and g(x,, ...,
Xp) = x; + -+ + x,. Since f and g are open, compositions of open maps
are open, and products of opens sets are open, it follows that I', is open. |l

LEMMA 6.5. Let X and Y be topological spaces with X first countable,
and let Q: X — Y be an onto, open, and continuous map. For any conver-
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gent sequence {y,} in Y with y,— y € Y and any x € Q" '(y), there exist
X € Q 'y, k= 1,2, ..., such that x, — x.

Proof. Let{U, i =1, 2, ---} be a countable basis of neighborhoods
of x with U; D U,,,. Since Q is open, each V; = Q(U,) is a neighborhood
of y. Hence, for any V;, we can find an integer K such that y, € V, when
k > K;. Furthermore, there must exist points x{’ € U, k = K, + 1, K, +
2, ..., with Q(x{?) = y,. For k = K|, select any x € Q~!(y,). This process
defines sequences {x{’}, i = 1,2, .... Without loss of generality, we may
assume K, | > K;. If we let x, = xﬁ k=K,_,+1, ..., K;, where K, = 0,
the construction shows that each U, contains a tail of the sequence {x,}.
Hence, x, — x. |

LEMMA 6.6. Suppose {H,} is a slow sequence with H,— H. If there
are pairs (N, d,), (N, d) € Im I, such that NJd, = H,, N/d = H, and
(Ny, d) = (N, d), then {H} has an n-dimensional realization.

Proof. Note that R""*”*" ig first countable. Thus, if we restrict the
range of I', to Im [',, we may use Lemmas 6.4 and 6.5 and the fact that
[, is continuous to conclude that there exists a convergent sequence (A,,
B, C,) — (A, B, C) in R""*"*9 such that I',(A,, B, CA) = (N, d,) and
I'(A, B, C) = (N, d). Note that (I, A, B,, C,) is a realization of

NJdd, = H, k = 1, 2, ..., and (I, A, B, C) is a realization of
Nid=H. |

LEMMA 6.7.  Ifa slow sequence {H,} has an n-dimensional realization,
then it has an n-dimensional realization of the form {(I, A,, B,, C})}.

Proof. Suppose {H,} has a realization having dimension n. Since {H,}
is slow, the decomposition (7)-(11) shows that {H,} is of the form
H(s) = Cy(sI — A,)"'B,;, where A, is ¢ X g with ¢ < n. Define

A.rk 0 Bsk
A, = o ol m=(), ¢, =[c, 0.1

THEOREM 6.8. For any slow sequence {H,}, 8{H,} = deg A.

Proof. Letn,=degA. We first show that there exists an ny-dimensional
realization of {H,}. Let N}j’ A}< HY and N = AH; then N and N are
polynomial matrices with (N{, A?) — (N, A). Since all poles of H, are
bounded, Remark 4 after Definition 2.1 shows that deg ASJ) deg A = n,.
Thus, from (14) and Lemmas 6.2 and 6.3, (N}{) AD, (N, A) e Im T 0
Suppose {(N,, A,)} is constructed by setting Nkr = N(” and Akz = A(’)
whenever H,i = H’, where the k; are defined by 'the composmon of the
following. !
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COROLLARY 4.7. Then (N,, A,) € Im [,,. The desired result follows
from Lemma 6.6.

It remains to show that n, is the minimal dimension over all realizations
of {H,}. Suppose {H,} has an n-dimensional realization. Then, from Lemma
6.7, it has an n-dimensional realization of the form {({, A, B,, C,)}. Let
(N,, d) =T',(A;, B;, C;) and (N, d) = ', (lim(A,, B,, C,)); from Lemma
6.2, A, divides d, for every k. Letting d’ = d,i, A} divides d{. Since T,
is continuous, d{? — d; thus, closure of R[s] C R(s) guarantees that each
AY divides d. Thus A divides d, and

n=degd=degA=n, 1

The following result offers one method of calcualting 8{H,} for an arbi-
trary convergent sequence {H,} in R(s)"".

TueoremM 6.9, IfH, =H,+ H

A iy FRgp U AZpy is a time ‘ C
8{H,} = 8{H y} + 6{H}.

Proof. Suppose {(E,, Ay, B, Cp)} is a minimal realization of {H,}. Ap-
pealing to (7)-(11), it suffices to show that {o,} = {(I, Ay, By, C,)} and
ot = {(Ag, I, By, Cyp)b are minimal realizations of {H} and {Hg}.
Suppose there exists a realization {(oy} = {(Ey, Ay, By, Cy)} of {Hy}
with dim 7, < dim o,. By Lemma 6.7, we may assume that E, = I. Let

£, 0] z—[z‘* 0] E—[E‘*] Co=1Cy Gl
S V7V . Y R ) O R

Then {o,} = {(E,, A, B;, C,)} is a realization of {H,} with dim &, < dim
oy. This is a contradiction. A similar argument shows the minimality
Of {(rfk}' I

Thus, one way to find 8{#,} is to first perform a time-scale decomposi-
tion H, = Hy + Hj and then to use Theorem 6.8 to find 8{H} and
8{Hp} = 8{4(Hp)}. Fortunately, the next theorem simplifies this task and
shows how to calculate §{H,} without resorting to time-scale decomposi-
tion. Recall that, for any H € R(s)"", H,denotes the polynomial part of H.

THEOREM 6.10. Suppose H, — H. Then 8{H,} = max; lim,
(deg AP + p((H{))).

Proof. Suppose H, = H, + Hp is a time-scale decomposition of {H,},
and let

Hg) = Hskj':v H}}) = kaj'
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It is clear that H? = H{) + Hf] is also a time-scale decomposition and
that H{) and H{) have characteristic polynomials A and Af, respectively.
From (12),

A = AgAY.

From (15) and Lemma 4.5, part 2, AY) — AP, Hence, from Theorem 6.8,
8{H} = deg A. Also, since each AY is convergent and monic, deg AY) =
deg A? for large k.

From (3), (Ap) is of the form (Ay) = ([T2 (ays — 1)) = (g8” + -+
+ g8 + 1), where g, — 0 as k— . Note that some of the ¢, may vanish:
so from Lemma 5.2, part 3, G(H,) has characteristic polynomial of the
form 7y(s) = s¢ + &,597' + - - - + &, where g may depend on k. Therefore,
the limit of any convergent subsequence of {r,} is of the form s%. Suppose
# is the least common multiple of these limits; then 4 = s4, where § =
lim, deg(r) = lim, w(4(H,)) = Tim, w(H,). The last equality is obtained
from Lemma 5.2, part 2. Arguing as in Lemma 5.2, part 2, §{%(H,)} =
8{H,} for any {H,}. Hence, from Theorem 6.8, we have 8{H} = 8{%(H)}
= deg 7 = ¢. Theorem 1.2, part 2, and Theorem 6.8 show that u(Hg) =
deg Ay + w(H,)). From Theorem 6.9,

8{H,} = deg A + Tim (deg Ay + u((H,)))
= Tim (deg & + deg &y + u((Hy))

= max kaﬁ (deg A + deg A}Q + w((HP))).
It remains to prove
deg A = deg A + deg AY. (16)
By the definition of A,
deg AY) = deg A + deg A — deg A®, (W)
Since deg AQ = deg A®, it follows from (15) that
deg A = deg AV + deg A). (18)

Combining (17) and (18), we obtain (16). |

CoOROLLARY 6.11. Suppose H, — H. If the CP of {H,} is conver-
gent, then

3{H,} = Ekal"‘(Hk)-
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Proof. In this case, = = 1 and A, so

3{H} = ﬁ;rﬁ (deg &, + u((Hy)y) = @ (u(Hy), + p((Hy)p) = H;IHM(HI()- 1

Qur next onal isto opnpralwp part3 of Theorem 1.2. An obvious con (-‘-.(‘.-

ture is that a reallzatlon {ou} of {H,} is minimal if and only if each o, is
controllable and observable (as defined in [8]). While controllability and
observability for every k (or, indeed, for infinitely many k) are clearly
sufficient for minimality, the next examples demonstrate how necessity
can fail.

ExaMPLE 6.12. (1) Even for a slow {H,}, minimality of {o} does not
imply controllability and observability even at a single point. Consider
the sequence {H,} in Example 4.3, part 1. We can decompose {H,} into

turn anthoamiiancag

LWU SUUSCYULIIVLD

s+2 HP = s+3
s+ D(s+2+1Rk-1) s+ D(s+3+ 112k

H;‘l) —

For H and H?, the CP’s are A = (s + D(s + 2 + 12k — 1) -
S+ D +2)=APand AP = (s + D(s + 3+ 12k) > (s + 1(s + 3) =
A®, Thus A(s) = LCM {AD, A®} = (s + 1)(s + 2)(s + 3). Since {H,} is
a slow sequence, Theorem 6.9 indicates that 8{H,} = deg A = 3. Every
minimal realization {o,} of {H,} must have dimension 3, but wu(c,) = 2 for
each k; hence, no o is controllable and observable.

(2) In this example, the CP converges, but controllability and ob-
servability on a subsequence is the most that can be achieved. Let

1, keven
B =1 1 podd -
(1/1) ¢ 1 1)2?
\L/RjO T 1y
A umn‘p calculation vields SI" 1 =2 but w(H,) = 1 when k is even, so
................... vi {H,} =2, but u(H,) k is even, so
any reallzatlon must contain infinitely many terms which are not controlla-

ble and observable.

The next result offers a weak extension of Theorem 1.2, part 3, to the
sequential case.

THEOREM 6.13.  Consider a convergent sequence {o\} = {(E,, Ay, By,
Co}and let H, = C,(sE;, — A;)"'B,. If the CP of {H,} converges and {o}
is minimal, then there exists a subsequence {(rk} such that oy, is controlla-
ble and observable for every j. If, in addition, {H}is a slow sequence,
then lim oy is controllable and observable, so o is controllable and
observable for every sufficiently large k.
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Proof. From Corollary 6.11, there exists a subsequence {Hk} of {H,}
such that 8{H,} = ,u(Hk) for all j. Therefore, each oy, has dimension
,u(Hk) and must be controllable and observable. If {H,} is a slow sequence
and the CP converges, Lemma 4.5, part 1, shows that A, — A, where A
is the characteristic polynomial of H = lim H,. Since each A, is monic,
for large k& we have w(H,) = deg A, = deg A = w(H). From Corollary
6.11, dim o = 8{H,} = w(H,); hence, o is controllable and observable. |}

Il

Restricting attention to slow sequences, Example 6.12, part 1, has spe-
cial significance from an abstract algebraic perspective. It is easy to show
that algebraic controllability and observability over the ring ¢ of conver-
gent real sequences, as defined in {17, Chap. 2], is equivalent to controlla-
bility and observability of o, for sufficiently large k. Thus, the linear
systems over ¢ do not satisfy the property that minimality implies algebraic
controllability and observability.

We conclude this section by examining the problem of extending Theo-
rem 1.2, part 4, to the sequential case. The following examples show that,
in our case, two minimal realizations of the same sequence {H,} may not
be related by nonsingular transformation (cf. [17, Theorem 4.19]).

ExaMpLE 6.14. (1) In fact, two minimal realizations may not be re-
lated by nonsingular transformation for any value of k. To see this, let
{H,} again be the slow sequence given in Example 4.3, part 1. In Example
6.12, part 1, we showed that 8{H,} = 3. Consider the two minimal realiza-
tions {(1, Ay, By, Cyu)} and {({, Ay, B,, Cy)}, where

-

0 1 0
0
, keven
—(6+\ (11+4\ ~(6+.1\
K/ \ K/
Alk:{ n 1 n :
u 1 V)
0 0 1
5 ] NE kodd
_<6+z> “<11+z) ——<6+Z>
o -
0 1 0
A 0 0 1
%=
S 1 7 1 2
(os308) (isTed) (643
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0
B, =10}, Cy=1[6 5 1,
1
He+2 s+ 1], k even
JL K « |
o 6+ 5+ 4 k odd
k k ’

Suppose there exist convergent nonsingular matrix sequences {M,} and
{N,} such that M\\N, = I, M\A,N,, = Ay, M\ B, = By, C;;N, = Cy for
each k. Then N, = M ' and A,, = M A, M. But a simple calculation
shows that A, and A,, have different spectra, yielding a contradiction for
each value of k.

(2} When the CP converges, Theorem 6.13 implies that there exists
a subsequence on which every minimal realization is controllable and
observable. Hence, Theorem 1.2, part 4, guarantees that for any two
minimal realizations there exist nonsingular sequences {M,} and {N,}

which relate the various matrices. However, it may not be possible to
find {M,} and {N,} which converge. Consider the sequence given by

o= (1) /(1)

with realizations (1/k, —1, l/k, 1) and (1/k, —1, 1, 1/k}. We have immedi-
ately M,-1/k = 1, s0 M, = k.

However, there is still one interesting case where a result is possible.

THEOREM 6.15. Suppose {H,} is a convergent sequence in R(s)™ and
let {(Ey, Ay, By, Ci)}, i = 1, 2, be two minimal realizations of {H,} with
(Exs Ay, By, Cix) controllable and observable for every i, k. Further,
assume that each (E;, A;, B;, C;) = im (Ey, Ay, By, Ci) is controllable
and observable. Then there exist nonsingular matrix sequences {M,} and
{N,} with M, — M and N, — N, M and N nonsingular, such that M, E,,
N, = Ey, M{AuN, = Ay, M;B,, = By, and Cy N, = Cy, for every k.

Proof. Applying the decomposition (7), (8) to {(Ey, Ay, By, Cy)} yields
decomposing matrices M;, — M, and N,, — N, and decomposed system
matrices A, Ay, Bisk, By, Cigh, and Cyy, with lim Ay nilpotent. This

¥

determines in two ways the same time-scaie decomposition H, = H, +
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Hy given by Hy(s) = Ciy(sl — A;) 7' By, Hp(s) = Cifk(sAik_I)WIBifk'
Note that, for sufficiently large k, each of the subsystems (I, Ay, By,
Ciw) and (Ay, 1, By, Cyy) must be controllable and observable. From
(16, p. 208], the similarity transformation T, = (V, V) ' VL, V|, where
Vi is the observability matrix of the pair (A,,, C.,), takes (I, A,
B, Ci) into (I, Ay, By, Cyyp). Furthermore, {T,} converges to the
nonsingular matrix T, = (V1 V,)"'VLV, . A similar construction yields
Ty — T,. A straightforward calculation shows that the sequences

M, —MI[T“' O]M N,=N [T;kl 0 ]N*'
k= Mt o Ty 1> k g Tf_kl 2%
yield the desired result. |
Our final result follows with the aid of Theorem 6.13.

CoROLLARY 6.16. If {H,} is a slow sequence with convergent CP and
{(Ey, Ait, Bu» Ci)}, 1 = 1, 2, are any two minimal realizations, then, for
sufficiently large k, there exist nonsingular matrix sequences {M,} and
{N\} and nonsingular matrices M and N such that M, —» M, N, — N,
ME N = Ey, MiA N = Ay, Mi B, = By, and C Ny = Cy for every k.

7. CONCLUDING REMARKS

The problem discussed in this paper is the realization of convergent
transfer matrix sequences with convergent generalized state-space se-
quences. Just as state-space sequences may be decomposed according to
time-scale behavior, a time-scale decomposition for any rational matrix
sequence may also be achieved. We have shown that convergence of the
CP of a sequence of rational matrices is a crucial issue in the minimal
realization problem. It was proved that, when the characteristic polyno-
mial of a rational matrix sequence is not convergent, the rational sequence
can be decomposed into finitely many subsequences in such a way that
each subsequence has convergent CP. Our results demonstrate that the
general problem can be reduced to finitely many subproblems, each of
which can be handled using a simpler theory. It is hoped that our results
will complement the robustness literature at large.
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