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In a previous article (J. D. Cobb, J. Math. Anal Appl., Nov. 1986) we considered
the class of all singular and regular linear time-invariant systems and proved some
basic topological propertics of that set. In this paper we examine specific
implications of those results to control theory and demonstrate, among other
things, that controllability and observability are generic properties even when
singular systems are included in the construction. We also derive related results for
other important subclasses of systems, proving that only some of the remaining
fundamental system properties are generic. Finally, we extend existing results
on connectedness and show that the number of connected components of the
controllable and observable sets is diminished whenever singular systems are
brought into the picture.  © 1989 Academic Press, Inc.

1. INTRODUCTION

We study linear, time-invariant systems of the form
Ex(t)= Ax(t) + Bu(z)
y(1) = Cx(1),

where E, AeR™, Be R™ and CeR? If E is singular, (1) is called a
singular system (see [ 1-7]); otherwise (1} is a regular. We are interested in
the topological properties of the set of all singular and regular systems. In
particular, we wish to explore three central issues: (1} It is well-known
[11] that the sets of all controllable, observable, and controllable and
observable state-space systems are open and dense in the space R"¢*+7+7)
of triples (4, B, C), using the natural Fuclidean topology. We wish to
prove analogous results for the class of systems (1). (2) Questions involving
the connectedness of various subsets of R"" *™¥7) and the space of rational
matrices have been addressed in [12, 10]. We will extend those results.
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(3) Two distinct definitions of controllability have been proposed for
singular systems [1, 4]; their relationships have been discussed in [6]. We
claim that the definition in [4] is more acceptable from a topological view-
point than that of [1]. A similar result will be proven for observability.

PRSP (LY ST e nenne ~F ovota
1

The study of topological issues is important in the areas of system
identification, disturbance decoupling, and singular perturbations, as well
as for achieving a fundamental understanding of dynamic processes. (For a
discussion of these topics, see [13].) Another area of application, and
our field of primary interest, is that of robust control. Robustness issues
are characterized by system uncertainties which may, in many cases, be
modelled as small perturbations in an appropriate topology. It is important
to know how system properties behave under such perturbations. For
example, when performing pole assignment for a state-space system, it is
desirable that the system be controllable. Thus, an important question con-
cerns whether a nominally controllable system retains controlability under
small perturbations. In general, we would like to have each relevant system
property hold on an open subset of the system space.

Many studies of topological aspects of systems have centered around
transfer function descriptions [12-157]. Some work has been done with
state-space representations [20,217], but virtually none of it includes
singular system representations. As shown in [9], this is due in part to the
fact that the various geometric structures become much more complicated
when singular systems are brought into the picture. Even in the case where
E =1, some interesting questions involving controliability and observability
of state-space representations can still be addressed [107.

Our work is closest to that of [13, 147 in that [13, 14] describe a
method of “completing” the set of strictly proper rational matrices with
respect to the time-domain behavior of the corresponding input—output
operators. In [9] we propose a similar “completion” of the regular systems
and obtain the space of all representations (1). More precise connections
between our work and that [13, 147 can be found in Section 5.

We now briefly summarize the construction and relevant properties from
[9] concerning the class of systems (1). To begin, we recall from [16] that
a necessary and sufficient condition for existence and uniqueness of
solutions in (1) for every initial condition and input is that the pencil
(E, A) be regular, i.c.,

det(sE—A) # 0. (3)

Non-square systems never exhibit existence and uniqueness of solutions
and hence will not be considered. Let Z(n, m, p) be the open, dense subset
of R *+m*P) consisting of all systems (1) satisfying (3). (The arguments ,
m, and p will be dropped when they are clear from context.) We do not
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wish to work with 2 directly since it contains unnecessary redundancy. For
example, a simple row interchange in (1) leads to a different point in 2.
The same holds for premultiplication by any nonsinguiar matrix ; yet, in an
intuitive sense, such transformations leave the system unaltered-—not even
a change of variables occurs. With these comments in mind, we define an

equivalence relation on X according to
(E\, 4., By, C\) = (E,, 45, B,, C,) (4)

whenever C,=C,, E,=ME,, A,=MA4,, and B,=MB, for some non-
singular M. We denote by #(n, m, p) the resulting quotient set. One way
to topologize £ is to simply impose quotient set topology inherited from
2. Equivaientily, ¥ receives identification topology inherited from the
natural projection u: 2 — &.

Among the properties of % established in [9] are that (1).Z is an
analytic manifold of dimension n(n+m+ p), (2)the state-space systems
can be naturally imbedded in % as an open, dense submanifold.
(3) although # eliminates the redundancy of X, it distinguishes systems
with distinct solutions and hence preserves internal structural information,
(4) Z is “complete” in the sense that distributional convergence of
solutions implies convergence of system parameters, and (5) the projection
map y is a submersion and is therefore open.

Important subsets of X include the set X7 of all systems (1) with
rank E =i and the singular systems

n—1

»={) 2
i=0

Also of interest are the slow controllable, fast controllable, controllable,
slow observable, fast observable, and observable systems: A 4-tuple
(E, A, B, C) is slow controllable iff

rank[AE— A4 B]=n
for every A€ C and fast controllable iff
rank[E Bl=n.

Denoting the corresponding sets of systems by 2. and 2, the controllable
systems are given by

X=X, nZ..
Dual expressions determine the slow observable, fast observable, and

observable systems X,, X, and X,. (For deeper system-theoretic inter-
pretations of these definitions, see [6].)



24 J. DANIEL COBB

The Weierstrass decomposition (see [16]) of (1) yields nonsingular
3 +1

matrinrag A and Al aninh
ICUS v alil 1y Sulil

I, O A 0
— r AN = ki , 2
I @

ot
iav

where A, is nilpotent and
r=deg det(sE— 4).
Let

[BSJ = MB, [C, C/i=CN.
By '

This decomposition allows us to define the impulse controllable systems as
those satisfying

ImA,+Ker4,+Im B,=R""".

Denote the corresponding set X,.; X,, is defined similarly. (For further
discussion of impulse controllability, see [6].)

It is easy to show that each of the classes 2., 2, etc. is invariant under
the equivalence relation (4). Thus the projection map y induces subsets &,
., %,, %, L, etc. in Z. In particular,

fco

n—1

=) &
i=0

It is shown in [9] that the regular systems can be naturally identified with
P'=%— L. We call ¥” the singular subspace and ¥° the singular
subspace. It is the topological properties of the subsets of . that are of
primary concern to us.

2. OPENNESS

The determination of whether a class of systems constitutes an open sub-
set of £ is especially important from the viewpoint of robust control issues.
Specifically, if the end product of a control system design satisfies some
desirable property P, it is beneficial to have P invariant under small pertur-
bations of the system, since any model inherently contains some parameter
uncertainty. Topologically, this is equivalent to the property P systems’
forming an open set.

In this section we consider each of the important subsets %, ¥4,, Z..,
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etc. individually and determine whether each is open in #. If a subset is
not open, we wish to characterize its interior. We begin with an easy result.
Let [E, 4, B, C]e ¥ denote the equivalence class determined by the

A Df"\r—"‘ in nthar rda
s L1y LIy, U JE in otner wuluo,

LE, 4, B, C]1=u(E, 4, B, C),

where pu: 2 — & is the natural projection. Further, let 2* denote the set of
all (E, 4, B, C)e X with rank E=i. Then | {2'|i=k, ..,n} is open and,
since & inherits quotient set topology from X (see [17]),

Y=g 7)

is open in . In particular, the regular subspace #” is open. It is well-
known (see, e.g, [11]) that L.~ L", £, ¥", and %, N L" are all open
as well. Extending this idea to all of . requires a preliminary result.

Lemma 2.1. If (E,, Ay, B, Ci) > (E, A, B, C)e X and
rank[AE—A Bl=n
Sfor every A eC, then for any R< oo there exists a K< oo such that k> K
implies
rank[AE,— A, B,]=n

for every 4 satisfying |A| < R.

Proof. Since E and A satisfy (3), we can write uniquely

det(AE—A)=¢ f[ (A—=4)).
i=1

from Lemma 4.3 of [7],

det(AE, — A) = ¢, [ (A—4y) H Gypd—1),

i=1 =

where A, — 4; and 0, >0 and k— co. Then, for some K< oo, k>K
implies that for every i either o, =0 or 1/|g,| > R. Hence, we need only
verify that

rank[1,E,— A, B,}J=n

for sufficiently large k. But this must be true, since all entries of the matrix
converge and since the rank n matrices form an open subset of R*"+™) ||
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THEOREM 2.2. ¥, %, ¥, and ¥, are open.

Proof. Since .# inherits quotient set topology from R""*™*7) a subset
W< is open iff u='(W) is open. Hence, we need only consider the
topology of 4-tuples (E, 4, B, C)eZ2. Consider a fast controllable
point—i.e., one where rank [FE B]=rn—and any sequence
(Eg, Ay, By, C,)— (E, A, B, C). Since the nx (n+ m) matrices with rank »
form an open subset of R***™) rank[E, B,]=n for sufficiently large k.
Therefore, 2, is open and so is &, = u(2',). Openness of £, follows from
similar arguments applied to the matrix [£].

To show that X', and %, are open, we consider a controllable point—i.e.,
one where

rank[E B]=rank[AE—A4 Bl=n

for every AeC. Then for some integer K;<o0, k>K; implies
rank[E, B,]=n. We note that for any 4#0

I 0

ol

1
[LE,— A, B] =[E, Bk]+1[—Ak 0]

0 I

and that the sequence A, is bounded. Hence, there exists an R < co such
that |A|>R implies rank[iE,— A, B,}=n whenever k>K,. From
Lemma 2.1, there exists a K,<oo such that rank[AE,—A, B,]=n
whenever |A|<R and k>K, Thus k>max{K,, K,} implies that
(Ey, Ay, By, C)e 2, and £, = u(ZX,) is open. That %, is open follows from
dual arguments. }

We therefore have that all intersections and unions of {J {£'|i=k, .., n}
with the sets listed in Theorem 2.2 are also open. Unfortunately, not all
subsets of interest have such a simple structure. Before proceeding with the
details, we need to prove an important preliminary result which also lends
further support to the definition of controllability for singular systems
given in [4-6].

LemMa 23, Z=int(Z. v Z’), L, =int{ZL,u L")
Proof. We will prove analogous statements concerning X', and 2,. To
do so, consider any
6=(E, A, B C)=(Z, uX)~5 =35"~5%_.

We will show that there exists a sequence g, — ¢ with o, ¢ X, U 2* for large
k. Hence, o is a boundary point of X', U 2”; since 2. is open, the result
follows.
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Let o,=(E—(1/k}A, B, C) and note that

Thus, for sufficiently large k, E— (1/k)A is nonsingular and o, ¢ 2*. Since
geX’— X, either rank[E B]<n or rank[AE— A4 B]<n for some Ae€C.
For the first case, note that

1

1 —21 0
[—k<E~—A>A B] —[E B]
k 0o I

Hence, for 1= —k,
1
rank [i <E—%A>—A B]<n

and o,¢2,. With regard to the second case, suppose rank
[1,E—A B]<n. For sufficiently large £ we may choose

Ak
A=
__/'Ll
Then
k
: 7l 0
[/1<E——A>-A B] + =[L,E—A B]
k 0o I
SO
|
rank|:/1<E-EA>—A B}<n
and o, ¢ 2.

The observability result is proven by similar reasoning. ||

Lemma 2.3 shows that the definition of controllability given in [4-6] is
“maximal” in a topological sense. Indeed, the result shows that &, is the
largest open subset of ¥ containing the controllable regular systems, but
no other regular systems. Equivalently, the set of uncontrollable systems
L — %, is simply the closure in % of the uncontrollable regular systems.
Similar remarks apply to observability. It is interesting that these maximal
definitions were developed without such topological considerations being
taken explicitly into account.

Now we use Lemma 2.3 to characterize slow controllability.
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THEOREM 24. int &, =%, int &, =%,

Proof. Clearly, L. c ¥, % v The result follows immediately
from Lemma 2.3 and Theorem 2.2. |

To state the next result, we need to define the order of points in 2 and
L. X o=(E A4, B, (), let

ord o = deg det(sE— A4). (5)

Since the right side of (5) is invariant under multiplication by M, we may
unambiguously set ord {=ord o whenever ¢=[c]. Further, define
O0'={¢e L|ord £=i}. From (5) it is easily seen that {J{O'|i=k, ..,n} is
open for any k.

THEOREM 2.5. int %, =%, 00" !, int &,=%,00" "

Proof. Since ¥%,>0", £,00""'=%,0(0"w0"""). But ¥, and
0" 0" ! are open; hence, we need only show that there exists 6, — ¢ with
o,¢2, forany o =(E, 4, B, C)e 2, — X, with ord 6 <n— 1. Invoking the
Weierstrass decomposition (2), we may assume that 4, is in Jordan form

Jy
A= ' ,
f Jp
Oaxa
where each J; is nonzero and cyclic. Let
Bl bil
= Bf : = Bi, 1= 1’ s P
BP+ 1 bl'ji
Also, let
bljl
B’z b2j2
b

Since o€ X,., B has rank p (see [6]). However, o¢ L, so

rank[ B }<p+a
Bp+1 '
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We consider two cases. First, if p=0, n=o0; then ord ¢ <n—1 guaran-

tees o > 2. Furthermore, rank B, <a we may assume M was chosen such
that

bll
0
By=| by
bloc
Setting
—O l 0 -0T
k
Ap = 0
: O 1yx—1)
[ 0 i
and

I 0
=M N A, BC
0 Ay
gives 0, ¢2 .

If p>0, we must have «>0, since otherwise Im A,=1Im 4,4+ Ker 4,
which implies that impulse controllability and fast controllability are

vvvvvv

0
b
Bp+l= 174.-1,2
bp+l,:x
Let
0 J,
J, 0
o= 1k |° Ap = Jpos S
pk
Oav x (ot —
LO---O 0 | | ( 1) x( 1y




30 J. DANIEL COBB

and

(1 0wt a,6)

A o
\ [y JK.a /

Again, it is easy to see that o, ¢ Z',.. The analogous result for observability
follows from dual arguments. J

It is important to note that Theorems 2.4 and 2.5 imply that %,., %,
%., and %, are not open; otherwise, we would have %, =%,
L, =%,00"" ", etc.,, which are clearly false (see [6]).

Since int(() X,;)= (\(int X;) holds for any finite collection {X,} of sets,
Theorems 2.4 and 2.5 may be used to calculate the interiors of a variety of
subsets of .Z not explicitly mentioned.

3. DENSITY

To prove that controllability and observability are generic properties, we
still need to prove that the corresponding subsets are dense in .#. Actually,
this is obvious since we know from [11] that £, ~ " is dense in ¥” and,
from our discussion in Section 1, that #” is dense in &. All subsets of
interest are therefore dense in ., since each contains %, N £".

A more interesting question involves the topology of the singular sub-
space Z*. This set is endowed with relative or subset topology inherited
from #. (In [9] it was shown that %° is the union of n regular sub-
manifolds of .#.) Questions of openness in .#* are trivial, given the results
of Section?2 and the fact that a set of the form Xn .#* is open in ¥*
whenever X is open in %. Proving density in %° is somewhat more
difficult. We need one preliminary result.

LemMma 3.1. Suppose A€ R™ is singular and b € R". There exist sequences
A, — A and b, — b such that, for every k, A, is cyclic and singular and b, is
a cyclic generator for A,.

Proof. We need only consider 4 in Jordan form. Let A, = A4+ (1/k) N,
where

Then A, is cyclic and singular. Since the cyclic generators of a given matrix
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are dense in R”, for each k there exists b, e R" such that b, is a cyclic
generator for A, and ||b—b,|| < 1/k. Thus b, - 5. |

THEOREM 3.2. Z.,n.ZL" " is dense in L.

Proof. Suppose &= [FE, 4, B, Cle ¥*. The Weierstrass decomposition
(2) gives matrices M, N, A,, A, B,, B;, C, and C,. From [11], there exist
sequences Ay, — A,, By, — B, and C, — C such that (4, By, Cy) is
controllable and observable for every k. Let

B,= [hﬂ "'—h_f;-nl
Lemma 3.1 guarantees the existence A, — A, b, — by such that each 4
is singular and cyclic and b, is a syclic generator. Hence, (A4, By) is
controllable. By dual arguments, a sequence Cy — C, may be constructed
so that (A4, Cp) is observable. Since each subsystem is controllable and
observable and their spectra are disjoint, the total system is controllable
and observable for each k. Thus, the corresponding sequence &, where

I 0 Ay 0O
— At —1 A, =M sk Nt
N T
D nlfll_Bbk‘l O =T oo -t
uk iVi L \,/k L\/‘k \/fk_j Fa

satisfies £, » ¢ and &,e £, n %’ That &, #" ! follows from cyclicity
of Ag. |1

Hence, controllability and observability are generic properties not only
of . but of the singular subspace #* as well. The fact that any & € #* may
further be approximated by points in #” ' is a side benefit of the proof.

4. CONNECTEDNESS

It was shown in [12] that the space rat(n) of all strictly proper rational
functions with degree n has n+ 1 connected components, indexed by the
Cauchy index #(-) (see [16]). We have addressed a similar problem in
[107] for subsets of #”. We wish to extend the results of [10, 12] to include
singular systems. It is our conjecture that bringing such systems into the
picture reduces the number of connected components of the various sets of
interest. This idea has important implications for identification theory (see
[12,137]).

Unfortunately, connectedness or disconnectedness of sets does not imply
anything about their unions and intersections. Hence, in order to charac-
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terize the various unions and intersections of %, 4., &,, %, €ic., we
would have to treat each case individually. In order to spare ourselves this
painful exercise, we will merely treat %., £, and %,,.

Before stating our results, we need to discuss a few technical points.
First, since & is a manifold, connectedness and path-connectedness coin-
cide; hence, connected components may be characterized by examining
which points can be joined by continuous paths. Next, observe that each
point in #”" uniquely determines a controllability matrix. Indeed, if
¢=[E, 4, B, C], we may assign to ¢ the matrix

U=[E~'B E"'AE"'B ... (E"'A)y"'E~'B]. (6)

U is unique since premultiplication of E, 4, and B be a nonsingular M does
not alter (6). Note that U reduces to the familiar definition when E=I. The
same viewpoint may be taken to define the observability matrix

C

CE'4
V= .

C(E~tdy

Although U and V cannot be defined in a consistent manner on %, in
some cases a partial extension can be obtained.

Lemma 4.1, (1) Letm=1and E€ L. L . If nis even, there exists a
neighborhood W of & such that sgn det U is a constant on W L If n is
odd and W is any neighborhood of &, there exist &, 6, e WnZL" with
det U, >0 and det U, <0.

(2) Letp=1and e ¥L,n L If nis odd, there exists a neighborhood
W of & such that sgndet V is constant on W L. If n is even and W is
any neighborhood of &, there exist £,¢,e W " with det V>0 and
det V, <0.

Proof. (1). From [8,9] we know that, on a sufficiently small
neighborhood W, of £, points n=[E, 4, B, C] can be represented by
matrix 8-tuples (N, A, B,, C;, N;, A;, B,, C,) depending continuously on
n; furthermore, there exist nonsingular matrices in #, such that

I 0 A, O
ey, Ma=[g )| aar w7
’

MB:B;], CIN, N/1=I[C, C,]



SINGULAR AND REGULAR SYSTEMS 33

For points in W, n #” this yields

o [ B AB, - ArB,
L4;'B, A7?By - A,

I 0 }_
= |0
[0 47

_ B, ... A""'B,
0-f 2o )
Af Bf Bf

where

Since n is even, sgn det U=sgn det U. But, for n={¢, A, is nilpotent with
index less than or equal to n—r, where »=ord ¢. In this case,

__[Bs .. A7'B,  A'B, .- A;’*‘BS]
0o ... 0 Ar=roiB, ... B,

which is nonsingular, since [B,---A;~'B,] and [47"~'B,--- B,] must be
nonsingular when ¢e #° (see [6]). Hence, there exists a neighborhood
W< W, of £ such that det U has constant sign on W.

For n odd, we simply note that choosing &, with sgn det 4,=sgn det U
and ¢, with sgn det 4,= —sgn det U gives the desired result.

(2). Here we may use arguments dual to those in (1), involving the

matrix
I 0
A

In certain cases we may therefore extend sgn det U or sgn det V' to some
points of .#°. More precisely, when m=1 and » is even, sgndet U at a
point ée X, L is defined to be consistent with the sign of det U at
points in a sufficiently small neighborhood of £. Similarly, when p=1 and
n is odd, sgn det ¥ may be defined for points ¢ € £, n £*. These definitions
allow us to state and prove our main result on connectedness in Z.

C, CIA?—I
v=| :
CSA:}—I C/.

THeEOREM 4.2. (1) If n is even and m=1, & and &, have two
components each, indexed by sgn det U; &, is connected.

(2) Ifniseven and m>1, %,,, %,, and &, are each connected.

(3) If nis odd and p=1, &, and £, have two components each,
indexed by sgn det V; %, is connected.

(4) Ifnisoddand p>1, %.,, %,, and &, are each connected.
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Proof. (1). If two points &, e #., with det U>0 and det U <0 exist
which can be joined by a continuous path lying entirely in %, [10]
guarantees that the path must pass through % But Lemma 4.1, part (1),
shows that this is impossible. Hence, %, has at least two components.
Similar statements apply also to Z,,.

To show connectedness of each subset of %, on which sgndet U is
constant, we first let

—1—4oc

: L we[0,4]
1
E\(2)= :k1 B
ool senn
I 1
- ]
n—l , ae [0, 1]
) i 1
(@)= [ 2((n+ 1)@ —1)+a)
n—1
n—2
| 1
+ (0 —1) 1, x€ (3, 1]
1
B()=1]:1, Cia)=1[1---1]
1

This defines a continuous path connecting the point

¢1=[E:(0), 4,(0), B,(0), C,(0)]

which has Cauchy index .#(H,)=n, with

¢>=[E:(1), 4,(1), By(1), C,(1)]
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which has I(H,)=n—2. It is easy to show that the path lies entirely in %,
and everywhere satisfies det U <0. To pass from ¢, to a point £; with
SJ(Hy)=n—4, let

[ 4 1
1—4a
1 , ae [0, 1]
- .1
Ey(a)= "1
—~1
1 , ae (s 1]
- '1
- -
" : ae[0,4]
i 2]
Ay(a)= 1
e —2((n+ 1)(a—1) + )
n—1
| .2
+(2e— 1)1, ae(3,1]
1
1
By(a)= e Cyla)=[1---1].
1

This process can be continued to connect all subsets of %, corresponding
to different .#(H) and with det U <0. From [10] it follows that each point
in "N %, can be joined to one of the ¢,. Since ¥"n %, is dense in .Z,,
and #° is locally connected, det U <0 determines a single component.
The case where det U>0 can be dealt with by using the same
parametrizations as before for E and 4 and by letting

Clay=[1---1 —11,i=1,..,n, and
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e
1
B=| ;| B@=| . B@=| .|
» i |
-1

To show that ¥ has two components, we note from [9] that " is
homeomorphic to the set R""+1+# of all triples (4, B, C) and, from [10],
that %, n %" has two components indexed by sgn det U. Since %~ ¥" is
dense in .%,, %, is open, and .Z is locally connected, it follows that each
point in %, has a connected neighborhood W <= %, with W %" # ¢. Thus
each point in %, can be continuously joined to a point in %, n ¥"; thus &,
has at most two components. Lemma 4.1, part (1), shows that there are at
least two.

If p=1, we know from [10] that £, n #" has two components indexed
by sgndet V. Since £, n #" is dense in %,, Lemma 4.1, part (2), implies
&, is connected. If p>1, [10] shows that £, ~.#" is connecteds so %,

(2) If p>1, [10] implies that L.NL", L, n¥L", and £, N F" are
each connected; the result follows immediately. If p=1, the same holds
true for .%.. We have only to show that %, is connected, since .%,, is dense
in Z,. From [10] we know that ¥, n ¥" has two components indexed by
sgndet V. But Lemma 4.1 implies that any ¢e.%., has a connected
neighborhood containing points in %, %" with different sgndet V.
Hence, %, is connected.

Parts (3) and (4) are dual to (1) and (2). |

Theorem 4.2 is slightly disappointing in that .%,, is not always connected,
even though singular systems have been included in the construction.
However, %, now has fewer components than in state-space theory (see
[107); furthermore, we are also in a position to prove a striking
generalization of the results of [12] on connectedness of the space of
degree » rational functions.

We may associate with each {=[FE, 4, B, C]e ¥ a rational function
matrix

H(s)=C(sE—A4) 'B.

Note that H is invariant under the equivalence relation (4). We wish to
extend the results of [12] on the number of connected components of
rat(n) to include (not necessarily proper) transfer matrices of points in &.
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A realization theory was presented in [2], demonstrating that any
rational matrix has a realization of the form (1) and that such a realization
achieves the minimum value of » if and only if it is controllable and obser-
vable. The space rat(n) is precisely the set of all rational functions with nth
order controllable and observable state-space realizations; hence, a natural
generalization of rat(n) is the class of all rational matrices realizable by
controllable and observable (i.e., minimal) systems (1).

To construct the appropriate transfer matrix space, let H be an arbitrary
rational matrix. H may be uniquely decomposed

H=H + H,,

where H, is strictly proper and H, is a polynomial matrix. We define a
degree function ¢ on the set of all nontrivial H in the following way: When
H,=0, let 6H=vH,, where v is MacMillan degree. Otherwise, let

0H =vH +max{k +deg T| T is a nonzero
kth order minor of H; k=1, .., min{m, p}}.

Let R?™(s) be the set of all rational p x m matrices H with 6H =n.

ProposiTiION 4.3. HeR”™(s) has a realization in £,,(n,m, p) iff
He R™(s).

Proof. From [2], H has a realization in X _(n m, p) iff
vH (s)+v((1/s) H/(1/s}))=n. Therefore, it suffices to show that
O0H (s5)=v((1/s) H{1/s)). Let H/(s)=T[hy(s)] and g=max{degh;}. Also
let T(s) and T(s) be corresponding kth order minors of H (s) and
1/s H/(1/s), respectively. Then T(s) is of the form

_ doskq+ o + qu
- sk(q+1) 4

T(s)
where
T(s)=d,s*+ -~ +d,.

The degree of the denominator of T (after cancellations) is given by

k{g+1)—(kq—deg T)=k +deg T.

Since Macmillan degree is obtained simply by maximizing the denominator
degree over all minors, our result follows immedaitely. J
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Any HeR/™(s) can be written uniquely in the form

1 — —lpt—r—
H(S)ZA()[ r ls 1 +bo:]+[( 1 1+“'+Cg~ (7)
provided A(s)=s5"+a,_,s" "'+ --- +a, is the least common denominator
of all the minors of H Some of the leading b,’s and ¢;’s may vanish.
Placing both terms in (7) over the common denomlnator A(s) yields the
unique representation

1

H(s)= A )[d"*1 ST +d?/-]. (8)
Hence, a given He R_,f’”(s) uniquely determines a line in Rrpm+ 1) +1
spanned by (0, .., 0, 1,a, |, .., ag;di Y o, dis s diyt, o, dS,). RE™(s) is

thus naturally 1mbedded m the real prolectlve spacep P"(”’”F’ (see [187);
R”7(s) = P"7™ 1) inherits subset topology. Clearly, rat(n) = R)(s) consists
of all strictly proper points. Since convergence in rat(n) corresponds simply
to convergence of coefficients, rat(n) also inherits subset topology from
R!(s); R\(s) is thus an appropriate generalization.

Now we can demonstrate the extent to which the inclusion of singular
systems affects connectedness in the transfer matrix space.

THEOREM 4.4. R/™(s) is connected.
Proof. Consider the map # defined by

[E, A, B, C]+ C(sSE—A)"'B

from %, onto R/"(s), and note that the image under # of
[EN, AN, B, CN] does not depend on the nonsingular matrix N. Also note
that

i 1 o
C(sE— A) B——————det(sE_A)C(adJ(sE A))B.

Since [E, 4, B, Cl e £,,, A(s)=det(sE— A) and # is continuous.
Suppose HeR/™(s). Then there exists. ¢=[E, 4, B,Cle %, with

transfer function H. If n is even, m=1, and ¢ has det U<O, let
E=[EN, AN, B, CN, where
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Then £ has det U> 0 and maps into the same H as does & Thus, R?"(s) is
the image of the component of %, with det U >0 under the continuous
function #, and R?™(s) is connected.

A similar proof works when # is odd and p = 1. In all other cases, .Z,, is
itself connected, so R#™(s) is also. |

We therefore have that the degree » rational matrices form a connected
set regardless of the values of p and m. This observation lends further
weight to our argument in [9] that . should be considered the natural
“completion” of the class of state-space systems.

5. RELATED WORK

In this section we wish to explore the relationships between our
constructions and those of other researchers. To begin with, we note that
our results constitute a sort of “deparametrized” version of singular
perturbation theory (e.g., see [197]). To see this, consider a parametrized
family of singular and regular systems

E(w)x=A(w)x+ B(w)u
y=_C(w)x,

where « belongs to some topological space and the functions E(-), A(-),
B(-), and C(-) are continuous at a point w,. For example, as in [19],
might be a real positive parameter with

Elw)= [é cglj]

and @y = 0. Our results imply that, if the system is controllable at w,, it is
controllable for all w sufficiently close to w,. Similar statements apply to
observability, fast controllability, and fast observability (Theorem 2.2), but
not to slow and impulse controllability and observability (Theorems 2.3
and 2.4).

We will now show that the proposed definitions of controllability and
observability appearing in [1] do not stand up to small perturbations of w.
We can in fact prove a much stronger result concerning the relationship
between the definitions of [1] and those of [6]. As shown in [6], a system
(1) is controllable (observable) in the sense of [1] if and only if it belongs
to .N Y (Fo N L) Theorem 5.1 may be viewed as a result in the same
vein as those of Section 2.

THEOREM 5.1, L. =int(¥,. N L), L =int(%,nZL,).
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Proof. From Theorems 2.4 and 2.5,
nt(%,.n%,)=int £ nint &,
= L0 (Zuom Y
=9
since ., = %.. A similar calculation holds for .%,. |

Thus we may interpret %, and %, as the largest generic sets consistent
with the definitions of [1]. £ .n %, (&, %Z,), although dense in &, is
not open and hence not characteristic of a robust definition of con-
trollability {observability).

Another body of work related to ours is contained in [13, 14], where the
problem of compactifying the space rat(n) is considered. Our construction
in Section 4 generalizes the method of [14] by which rat(x) is imbedded in
P?" as an open, dense submanifold. It is also shown in [14] that rat(n)
(M¢,¢ in the notation of [14]) has a partial compactification M, , ; which
is obtained by taking all H of the form (8) with A(s) # 0 and projecting
into P?". Our construction is easily seen to satisfy

rat(n) c R (s) < Ml,n, 1

7

We are further able to prove the following resuit.

PROPOSITION 5.2. R(s) is an open, dense submanifold of P*".

Proof. Consider H erat(n) given by

bn_lsn-—l_*_ +b0

H(s) = .
a,s" + -+ +ag

Clearly, HeR\(s) iff both numerator and denominator are coprime and
cither «@,#0 or b,_,#0. This determines the complement of a
homogeneous variety in R***' (see [18]); thus, R!(s) is the complement of
a projective variety in P, All results follow immediately. [

Proposition 5.2 implies that R!(s) has the same compactification as does
rat(n)—viz. P?", Extension of these results to the multivariable case has not
yet been achieved, even for regular systems.

6. CONCLUSIONS
Based on our previous work [9] which describes the manifold of all

n-dimensional singular and regular systems, we have in this paper explored
the topological properties of controllability and observability. We have
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shown that controllability and observability are generic properties, even
within the class of singular systems. Further, we have proven that, between
the two competing definitions of controllability and observability, only
the more restrictive ones determine a generic property. We have also
demonstrated that the manifold of singular and regular systems is the
natural “completion” of the state-space systems, in the sense that the
corresponding space of transfer functions R?”(s) is connected. This result
does not have an analogue in state-space theory and lends further support
to the completeness arguments of [9]. It is our intention to use these
results while examining several important problems in robust control
theory.
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