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We construct a real analytic manifold % of systems of the form Ex = Ax + Bu,
y=Cx and show that .& is the “completion,” with respect to solutions, of the set of
regular (state-space) systems, ic., those systems with nonsingular E. Other
geometric and analytic properties of % are established, including genericity of the
regular systems.  © 1986 Academic Press, Inc.

1. INTRODUCTION

In this paper we are interested in properties of regular (state-space)
systems

X=Ax+ Bu

= Cx (1)

at infinity. Here, the real matrix A is nxn, Bis nxm, and C is pxn. To
illustrate behavior at infinity, consider the simple example where n =2,

m=p=0, and
—k —k?
A= .
i
Choosing x(0) = [9], we obtain the solution

~k2l€ ki
xk(t):[ e—kl :f
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5] o] @
where 9 is the unit impulse.

Thus we have a sequence of regular systems whose solution sequence
converges, yet the entries of A4 fail to converge. In fact, there does not even
exist a regular system which achieves the right-hand side of (2). In this
sense, one might say that the class of regular systems is not “complete”;
apparently, the space contains “holes” which can be approximated but not
achieved by regular points. It is natural to ask what sort of systems are
represented by those holes or, equivalently, what is the smallest space of
systems which is complete with respect to its own solutions and which con-
tains the regular systems?

The appearance of an impluse as the limit of unforced solutions of (1)
suggests that the answer might involve the so-called singular systems

As k — o0,

Ex=Ax+ Bu (3a)
y=Cx (3b)

where E is a singular matrix. Such systems have been studied extensively
(e.g., see [4-10]). In [10] it is shown that a necessary and sufficient con-
dition for existence and uniqueness of solutions in (3) for every x(0) and u
is that

det(sE— A) # 0. 4)

We note that premultiplication of (3a) by any nonsingular n x n matrix M
has no effect whatever on the equation’s solutions (not even a coordinate
change!). One consequence is that, since M = E~! transforms (3) into the
form (1), (3) may be considered regular if E is nonsingular. Hence, (3)
represents both regular and singular systems if the rank of E is not
specified.

One is tempted to say that systems (3) form a Euclidean space of
4-tuples (E, 4, B, C) minus the algebraic variety of points violating (4).
However, in view of-the preceding comments, we are more interested in the
quotient set determined by the equivalence relation

(E, A, B, C)~ (ME, MA, MB, C) V nonsingular M.

It is the structural properties of the quotient set which will be explored in
subsequent sections.

The idea of studying the geometry of spaces of linear systems is by no
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means new (e.g., see [1-3]) and has been exploited with great utility in
such areas as system identification and disturbance decoupling. Results in
[1, 2] are particularly closely related to our work in that the same sort of
completeness issue is addressed. There is a major difference, however,
between our efforts and those of other researchers in that other work in the
area has centered around rational (transfer) function representations of
systems which by nature capture only input-output properties. It is often of
crucial interest as well to study internal structural properties of systems,
i.e,, those properties of (3) dealing with the variable x.

Perhaps the main reason for this lack of interest in studying the space of
linear systems (1) is that, when regular systems alone are considered, the
structure of the space is obvious: Each system of the form (1) determines a
point in the Euclidean space of all triples (4, B, C). Hence, the class of
regular systems inherits, among other things, the structure of a real-
analytic manifold of dimension n(n + m + p). We will see, however, that the
situation changes drasticaily when singular systems are brought into the
picture.

2. PRELIMINARIES

Fix positive integers n, m, and p, denote by V the algebraic variety in
R"2"+m+7) of points violating (4), and define the open, dense subset
E(n, m, p)= Rn(2n+m+p)_ V.
Also let
2in,m, py={(E, 4, B, C)e X(n, m, p)|rank E=i}; i=0,.,n

When the arguments (», m, p) are intended, we may simply write X or 2%
Clearly, the X7 are disjoint and

r={J
i=0

We use the notation
(E\, A, B\, C))~(E;, 4,5, B,, C,)

iff C;=C, and there exists a nonsingular M such that E, =ME,,
A;=MA,, and B,= MB,. This determines an equivalence relation on
R +m+r) The corresponding quotient sets of X and X’ are denoted
L(n, m, p) and L'(n, m, p), respectively. Again, the £’ are disjoint and

2=} 2

i=0
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We signify by [E, 4, B,C] the equivalence class determined by
(E, 4, B, C)e 2.

Appealing to the theory of distributions (e.g., see [11]), let & be the
space of C* test functions ¢: R — R with compact support and let &, be
the space of distributions (continuous linear functionals on 2) with sup-
port in [0, w0). By 9, we mean the piecewise C* distributions: Each fe€9g,
also belongs to &, and there exist finitely many points f,,.., f; in any
bounded interval and a piecewise C® function fp such that f = fp on each
(t;y ti 1) fp is the piecewise C* part of f and f; = f — fp the impulsive part.
We may impose a strong and a weak topology on 2, as foliows: Let Jy be
the relative topology induced by the standard weak* topology on 2, . 7 is
determined by the basis of neighborhoods of the origin consisting of all
finite intersections of sets of the form

Ve={fe2,| 1<fid>I<1}

and
Varse={f €, | m{te[a, b1 |1 fo1)| =8} <&}

where 0 < a < b and m denotes Lebesgue measure. It is easily seen that con-
vergence to the origin in J is equivalent to convergence in Jy along with
almost uniform convergence of the piecewise C*® parts on compact sub-
intervals of (0, c0). We also use the symbols Zy and J, to refer to the
corresponding product topologies on the spaces 2% x R’.
Define the family of solution mappings
P E > DRI

xXou-*
according to

D, AE, 4, B, C)=(x, Cx, x¢, Cxy)
where x is the solution of (3a) corresponding to initial condition x,eR"
and input ue 2} Using linear operator terminology, we know from [4]

that for each oel there exist subspaces S@ F=R" and linear maps
A,:S— S and 4, F— F, A, nilpotent, such that

41 » )
X = (e(As) PSI"_ Z 5’7 lA}'P;:g) XO

i=1

g—1
+ (e(A.,.) Pg— 3. 5"A‘;-P,,-S) * Bu. (5)

i=0
Here, e(A4,)e 9;’,2 is the locally integrable function defined by

e(A,)(1) =e'Y, =0,
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Pg.: R” - S and P,y R" > F are projection operators, ¢ in the index of
Ay, &’ denotes the ith derivative, and * denotes convolution.

We are careful to include information about the initial conditions x, and
Cx, of x and y as part of the solution @ () since singular systems exhibit
a loss of initial information in x and y. For example, the sequence of
systems

has solutions y,(t)=x.(t)=e¢ *x, from which x, is easily determined.
However, in the limit the solution is y = x =0 for every x,. The importance
of maintaining information concerning the initial value of y is especially
clear when one deals with the theory of observability [5]. Such infor-
mation will also be crucial in our study of completeness.

In addition to the family {®, ,}, we define the map

@:X(n,0,0)> 7

according to

g -1 ) )
P(o)=e(A,) Pg.— Z o ]A}P,,-S.

i=1

If bases {v,,.., v,} of Sand {v,, ,.., v,} of F are chosen, then using matrix
terminology we may construct the similarity transformation

T: [Ul v U”
yielding
[ #(0) ey dr 0 ]
T ' P(c), ¢> T —[ 0 —Xe ) (1) 4(0) 4]

for every ceX, ¢ where A, and A, are dxd and (n—d)x(n—d)
matrices.

Since equivalent points in X' determine the same solution of (3) for every
x, and u, we may define the induced maps

- G opn+ n+p
Yur L > D77 xR

¥: £ (n,0,0)> 97
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on the quotient set &. If u: 2 — % and v: X(n,0,0) » £(n, 0, 0) are the
natural surjections, then

(pxou = l[lxou o U

and
D=WYov.

We say a differentiable manifold [12] is analytic if it has an atlas {¢,}
such that ¢,o¢, ' is analytic for all choices of « and f. An analytic map-
ping between manifolds f: .#, — .#, is one where Yo fo¢ ' is analytic for
any charts ¢ and ¥ of .4, and .#,. By an analytic diffeomorphism we mean
a bijection f such that both f and £~ are analytic. If such an f exists, we
say #, and #, are diffeomorphic.

Finally, in any topological space we signify the boundary of a set 2 by
0Q. An infinite sequence with elements x, is denoted (x,).

3. A MANIFOLD OF LINEAR SYSTEMS

Before addressing the issue of completeness, we wish to consider certain
fundamental properties of the quotient set .. First, we establish its
manifold structure.

THEOREM 1. P(n,m, p) is a real-analytic manifold of dimension
n{n+m+ p).

Proof. We appeal to the standard Grassman construction as in [127]. It
will be shown that & is an open subset of G,(R**")xR" where
G,(R**™) is the Grassman manifold of #-dimensional subspaces of R *",
Hence, % is an n(n+m+ p)-dimensional real-analytic manifold.

From [10] we know (4) guarantees that the matrix [E 4] and, hence,
LE A B] have full rank. Then

g(”’ m’ 0) < G)?(Rzn +n1)'

From [12, p.92] we have that G,(R**™) is a quotient manifold of an
open subset of R™?**+™ ynder the submersion u determined by a. Since

Z(n, m, 0)=p " (L(n, m,0))= {(E, 4, B)|(4) holds}

is open and G,(R**™) has identification topology with respect to pu,
ZL(n, m, 0) is open. Hence,

L(n, m, p)=L(n, m,0)x R <= G, (R**+")x R”

is open. ||
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We note that even £ (n, m, 0) is not compact. For example, the sequence
(&) in L(n, m, 0), where

11
5k_[kE A B]

for some given E, A, B satisfying (4), converges in the compact manifold
G,(R**™) but not in Z(n, m,0). The points missing in L(n, m, 0) are
precisely those violating (4) and hence those which to not exhibit existence

firnad
and uniqueness of solution. Such points cannot be considered well-defined

systems, and so should not be included in the system space. This is in con-
trast to the compact manifolds described in [1, 2].

The next result characterizes in more detail the subsets ¥ic Z;
i=0,..,n

Turorem 2. (1) #£"(n, m, p) is an open, dense submanifold of ¥£(n, m, p),
diffeomorphic to R""tm+r),

(2) FMn,m, p) is a regular submanifold of & with dimension
n(m+ p+2k)—k? for k=0,.,n—1.

(3) 0L (n,m, p)os U=t Lin,m, p); k=1,..,n.
4) Z°n, m,p)is dzﬁ”e()morphzc to R"m+P),

Proof. (1) First, note that
1L (n, m,0)) = {(E, 4, B)|det E#0)

is open and dense in I(n, m,0). Since Z(n, m,0) has identification
topology with respect to p,

F"=L"n,m 0)x R

is open and dense in .#. A standard Grassman chart takes
#"(n, m, Q) - R""+m)
according to
[E, A, B1->[E'4A E 'B]

The chart is onto and hence a difffomorphism between £"(n, m, 0) and
R™**+™) Thus, %" is diffeomorphic to R""+m+7),

(2) Construct an atlas on £*(n,m,0) by restricting standard
Grassman charts. For example, let U, = G,(R?*'*™) be the open set of all
LE, A, B] where the first & columns of E and the first # — k columns of 4
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from a basis for R”. Each point ¢ in U, may be represented by a matrix of
the form

(e T, 0 ]
Lo 7, 1, « "1

The corresponding chart
by Uy > RIETm)  REGK) o Q=P
is defined by
$(&)= (T, Ty, Ts).
The restriction ¢, =d¢,|U, " L*(n, m, 0) satisfies §,(¢)= (T, T,,0) and,

hence, ¢, may be considered to have range

R+ m) o RK ~k) — RHOm+ 2k) - k?

Other choices of independent columns—(4) guarantees that # can always
be found in the first 2n columns—give maps ¢,, ¢s,.... Clearly, the domains
of the @, cover ¥*(n, m, 0) and, since each ¢,o¢, ! is a diffeomorphism, so
is each @,o¢; . Thus, {§,, §,,..} is an atlas for £*(n, m, 0).

To show submanifold structure, we need to prove that the injection

j: L*(n, m,0) - G (R¥"+m)

has constant rank n(m + 2k)— k2. But this is clearly true since, for example,
$rojod; (T, T,) (T, T,,0).

For any submanifold, manifold topology is at least as strong as relative
topology. Hence, for regularity of #*(n, m, 0) we need only show that
every open set in #*(n, m, 0) can be extended to an open set in G, (R**™).
Consider an open V< £*(n,m, 0) and let ¥,=V U, Then each V, is
open and V=) V,. Since R"™*+) ¥ can be imbedded in R*"*+™ as a
regular submanifold, ¢,(¥;) can be extended to an open set W,. Further-
more, ¢; '(W,) is open so | ¢, (W) is also. But

(U ¢ (W) LX(n,m, 0) = (¢, (W) ", (R +20- )
=U ¢ (V)
= U V;
=V
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so ¥ has an open extension. It follows that

Lk = P*(n, m, 0) x RP"

is regular in &.

(3) Let i<k and ¢eX(n, m, 0). Choose any open Uc X(n, m,0)
with g € U. Then there exists t = (E, A, B)e U such that rank E=k. Thus,
1€ 2*(n, m,0) and 6 € 0X*(n, m, 0). Therefore,

U (n, m, 0)c 0X*(n, m, 0).

Applying the submersion p, we obtain

k—1

Uj(an J w(Z(n, m,0))

F=0 i=0

=u <kU] Zin, m, 0))

i=0
< u(dX*(n, m, 0))
= 0u(2*(n, m, 0))
=0%*%(n, m, 0)

since % (n, m, 0) inherits quotient set topology. The result follows from

L= L (n, m,0)x R

(4) £°n, m,0) has an atlas consisting of one chart:

[0, 7, B] » B.

Hence, #°%(n, m, 0) is diffeomorphic to R™ and #° is diffeomorphic to
R"("Hrl))' l

Since each %, i <n, consists of equivalence classes [E, 4, B, C] with E
singular, we call £°,..., #* ! the singular submanifolds of &. Note that the
set of regular systems (1) is precisely " which we refer to as the regular
submanifold. In order to argue convincingly that % is not too “large,” we
need to show that #" is in fact dense in .¥. We will actually prove a
stronger result in the next section.
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4. PROPERTIES OF THE SOLUTION MAPPINGS

In this section various relationships between the structure of % and the
family {¥,,,} will be established including completeness of #. To begin
with, we note that the equivalence relation &~ on 2 is closely connected
with the family {®,,,}. For example, we have already seen that equivalent
points in X determine the same solutions of (3). We now show that the
converse is also true. Let D be any dense subspace of 2} with respect
to Ty .

THEOREM 3. For any o, a,€2(n,m, p), 0, =0, iff

for every x,eR”, ueD.

Proof. Necessity is obvious. To prove sufficiency we note that, for
u=0, (3) has solutions

q141 . .
<C’(As1) Pgp— 3, 07 IA}q PF]S|> Xo

i=1
g2~ L \
:<e(A32) PS2F2_ Z o A_/'ZPF2SZ) Yo
i=1

corresponding to ¢, and ¢,. From linear independence,
e(Asl) PS|F|XO = e(A.\Q) PSzF;_'XO
for every x,€ R”. Hence,

144 _ A
e Pep=e""Pgp,

for every ¢, so their images S, and S, coincide. The same holds for their
kernels F, and F,. It follows that

e — o

1A
$0 A, = Ag. Also from linear independence, i=1 gives Ay =A,.
Now choose a sequence (u;) in D with u, — év in Jy, where VeR™, and
let x4 =0. Taking limits yields
-t
(e(Asl) Ps B — Z 5'A_}1P1-‘,5131) v
i =0

i=

-1 PRI
= (e(AsZ) P, pBy— Z 51A}2PF252B2) .
i=0

AN /
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From linear independence,

e Pg . Biv=e"Pg ;. B;v

for every v, so P, ., B, = Pg,,, B,. Setting i =0 gives Py 5 B, = P,s5,B,, s0
B,=B,.
Finally, we note that

Cixo=Cyxq
for every x,, so C,=C, and g, ~a,. ||

Theorem 3 shows that the family of incuded maps {¥,,,} distinguishes
points in the quotient set .. That is, for any ¢, &, & with &, #£&,, there
exist xo € R”, ue D such that ¥, (&) # ¥V, .{&2).

Our next result states that not only is the class of regular system "
dense in ¥ with respect to manifold topology, but #” also satisfies a den-
sity property involving solutions.

THEOREM 4. For any e L(n,m, p) there exists a sequence (&) in
L"(n, m, p) with £, — & such that

qlxou(ék) - onu(é)

T for every x,eR" and ue 97

Proof. If £ e £"(n, m, p), the result is obvious. Since £ (n, m, p) inherits
quotient set topology, we need only show that every system o of the form
(3) with E singular can be approximated by a sequence o=
(Ey, Ay, By, C)e 2" (n, m, p) such that & (6,) > @, (o). Recall that ¢
has a decomposition S® F=R". If we let E,|{S=1, E,|F=A,—(1/k)],
A S=A,, A |F=1I B,=B, and C,=C, then o,€2" and Pgx;, = Pgpx
for every k. To show P.ex,— Pusx for every x, and u, we set
Ay =A,—(1/k) I and note that

q--1
A/}(II _ Z ki+1A;»

i=0

SO

. w1 g1 g1 i1, 4i
Aﬁ(jemﬂ‘ :«_(* Z kH—lA) l—[ eAk*tA/
7

i=0 j =0

g-1 NFqg-1q- k’+1l‘ )
:e’"<— Y k’“A_;) H LGk e AL (6)

i =0 i=1 r=0
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Each entry in (6) is of the form i (k, t) e * where ; is a polynomial
function. Also, there exists a sufficiently large integer j such that all entries
of

N/ 1N
1

. / —i A
Aper =L (W) e
| DAY |

1\, e e
= - Vi g=1) ,—kt E . Aot i
< k> ¢ ,Z:o <l>< k) re

are of the form ¢(1/k, t) e ** where ¢, is again a polynomial.
We treat the forced and natural parts of Pgx, = x4 + X, separately. To
show (x,,) converges almost uniformly, simply note that

Volk, 1) e ¥ >0

uniformly on [¢, o) for any ¢> 0. Hence

e(Ag") Ppsxo—0

almost uniformly for every x,. We proved in [67] that
g1
ept) > — L 0

=1

in the weak* topology of @gz SO x,, converges in 7 to the desired limit.

For the forced response, decompose u=u; + up. The piecewise C™ part
of the forced response due to u; converges almost uniformly on compact
intervals since

i1
e(Ag'yx 0/A, =3 &/ T AU D 4 Ut De(4 1)
i=0

and ¥, , ((k, 1) e "' converges uniformly on each [¢, o). For u,, note that
there exist functions #;: R - R"™, where u, has support in [0, c0) and is C*,
such that

upl(t) = i u(t—t,).

i=0

To show almost uniform convergence of e(A ;') * Ay ' Ppg Bup on compact
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intervals we need only show convergence of e(Ag"') * Ay ' P g Bu, for each i
Integration by parts gives

! 1 + . ~1 .
L eI AP, But) dt = Afe" V%P Bult (1) dr

4}

J ~
+ Y Ape s P Bul(0")
r=0

J
_ r (r)
Z A_kaFSBu;‘ (2) (7)
r=0
3 it 2 arn falian S a Ardinagey firmatiae camon ™
where the derivatives of u, are taken in the ordinary function sense. If
Jj=z g1, the last term in (7) converges uniformly on compact intervals to

the piecewise C* part of —3¢_ ] A7 P.cu’. Each element of the second term
is a linear combination of terms of the form o(k, t) e ¥ with convergent
coefficients. For sufficiently large j, each entry of the first term in (7) is of
the form [y @(1/k, t—1) ¢ * “p(z)dr where v is continuous. Almost
uniform convergence follows from

o 1

o |? <k’ T)

qu( ) “p(t—1)del < M

leoqj T ek dy

sup e dr

re[0,00)

n;!
= M; IOC,—I Em

where M < oo and the o, are constants. Therefore, we have that the
piecewise C™ part of x, converges almost uniformly on compact intervals
to the corresponding part of x. To show weak* convergence, simply note
that

e(A,;:Ql) * A_,fk]PJ"SB“ = (e(Af};l) * PugBu)— P.cBu

G- 1
- <— Y 8« P,,-SBu>wP1,-SBu

i=
g -1 )
=— Y AP, B
i=0

since convolution is a continuous operation on %,. Hence, (x,) converges
as desired in 7,. J

Now we are finally in a position to prove completeness of .%. First, we
need a technical lemma.
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LemMa.  If (&,) is a sequence in L (n, 0, 0) with (P(,)) coverging in @'f
in the weak™ sense, then there exist convergent sequences (E,) and (A,) in
R™ such that the pencil s-lim E,—1im A, is regular and ¢, =[E,, A,] for
every k. In other words, (&} converges.

Proof.  Suppose (&) — Z and choose ¢ €% such that [& ¢(r) dt 0.
The eigenvalues #,,..., n,, of {Z, > can be indexed so that #,,..., , # 0 and
Hrsirs 1y =0. We have

so the eigenvalues #, of {(¥(&;), #> can be indexed to guarantee that
nx — 1, for every i. Choose a rectifiable Jordan curve I' encircling #,,..., 7,
but not the origin. Then we may define the projection matrix

1
P=_— 11— <{Z, ~1ds.
5 (1= <Z.>) s
For sufficiently large k, I encloses #,..., #,, as well, but does not enclose
':lr-i- 1,hc 3o nnk‘ HCDCC,

1 —1
Pe=g=§ (51— (V&) $3) ' ds

defines a sequence of projections satisfying P, — P. This construction yields
the eigenspace decompositions O, ® R, = 0 @® R=R" where

QkZImPk, RkZIm(I“_Pk)
0=Im P, R=1Im(I— P).

As in [4], &, determines subspaces S, @ F, =R" and linear operators
Ay and Ag,. Let d, =dim S and suppose A4, has eigenvalues A,,..., A4,
indexed so that

Mo = j:’ (1) e dt.

For large k and j—i>r, we know that n, ##, so A, # ;. Hence,
{Atkss A} and {4, 4 Ags} induce an eigenspace decomposition
S, @S¢ =S, Since S} and S} are 4 ,-invariant, they are also {¥(&,), ¢)-
invariant. Note that S;, Sy, and F, have characteristic polynomials
ITics G—ma), T, ) (s—ny), and TT7_ de+1 (S—1y),  respectively.
Thus, S, =Q and S, ® F,=R,.

Choose linearly independent columns vy,..,v, of P and v,,,.., v, of
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I— P and define V= [v,--'v,]. The same choice of columns in P, and
I— P, gives V= [vx,..., U, ] With ¥, - V and ¥V, nonsingular for large k.
Next, choose bases {W, s, Wau} Of Vi'Sy and {wy, y s, Wae) of

17—

i Qi QN D o1 Ty ¥ . TOT s L0114l
Vi L DIICC Oy & I allld vV I\ = 11| 4 ], 1L I0IIOWS Ulal

0
[(Wep i Wl = I:Wk]

for some W,eR"" ", Let

Qo 4Ll .1 DUV s A YRR NN Ol o1 i PRV B al far o e~ O
OUICC LIIC COLUINS O6 1 p 10111 DAdOS Ol O, g, dllU L, 101 ally Yy © 7
TP ) ¥ T,
© (1) e dt 0 0
= 0 oo y(r) e dt 0
0 0 =28 (= 1) W N0) A,

where Al eR”, A% eR“% "7 and 4, eR" % is nilpotent. If, for some
i>r, Ay =0 for infinitely many k, there exists a subsequence

M= #0) di 20,

But 5, — 0 for i>r, 50 A,y gser Ay #0 and A} is nonsingular for large k.
Define

I 0 0
E=T. |0 477" o} 1!
[0 0 4,
00
Ak:Tk 0 I 0 ;l.
| 0O 0 7
Observe that
V;‘(‘p(fk)a l//> Vk:
fo w(r) e dt 0
fo w(t) e 0 ] .
. . \w
0 W{ 0 e (=) o) Ah |
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converges for every y € 4. Hence, there exist Z, e @’i and Z,e 9(;7")2 such
that

e(Ay)— Z, (8)
and
e(A5) 0 _
W"[ o —xupean) e A
Differentiation of (8) gives
Al‘ke(A,\k) + 61_’ Z‘S

SO

A Jw (1) e di > (Z,, > — $(0) L.

Since (Z_, ¢> has eigenvalues #,,..., 5, # 0, we may write

o0 . \'7‘
( pyetidr) = (Z,, 4!

0

and hence
W (K2, > =gV DLZ,, > ' L A4,

From [ 11, p. 43] and the fact that we consider only distributions with
support in [0, oo), there exist unique Y, Y, e@’f such that

. e(A”, 0 .
R L

and

Y:Z/.

Since ¥, — Y, Y, — Y. But

A% (e(Al) — OI) 0
Y,=W,| " s o W,
* [ 0 Ap( =2yt o Ay —on |

A0 .
(m "% L)

/
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where 0 is the unit step. Furthermore,
Y, — 01— Z,—0I

and <Z;, ¢>—[& é(1) dt I is nonsingular, since {Z,, ¢ has eigenvalues
Het 1o ﬂ’l,,—Oandfo dt?ﬁo Thus

ANI 0 71 o0
Wk[ 0 A_,J Wi _’<Y,¢><<Z,/,¢>~JO ¢(t)dt1> A4,

To conclude, we note that
I 0
d 0 V,';‘—»V[ ]V
Ek = Vk A _;lk 0 1 O A/

and

The limiting pencil is regular since
det(s - lim E, —lim A,) = det(s] — A,) - det(sAd,—I) # 0.

Finally, observe that

I 0 0 00
Y(E,A Q=T 10 42" o, |0 1 o] |T:'
0 0 A 0 0 I
e(Ay) 0
=T, | 0 e(43)
0 0 ykw“m

= W(ék)-

Let m: 277 xR"* 7 —» 9" be the projection map onto the first n coor-
dinates. Then, for any £e £(n, 0, 0).

P(&) xo=m( 'Pxo()(f))

so Theorem 3 implies &, = [ Ey, A(]-
It should be noted that the constructions in the foregoing proof always
assume that k is sufficiently large. For small values of &, simply choose any

(B, 4)el.. |1
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We comment that in the proof of the Lemma, the matrix 4, may not be
nilpotent, depending on the choice of ¢. The notation we use here is
therefore slightly different from that used in (5) or [7].

Of general interest, but not directly related to the rest of our results, is
the following

COROLLARY. As a subset of@’f, E={e(M)|Me R"Z} has weak* closure
equal to Im ¥.

Proof. Although QZ’_’f is not first countable, it is routine to verify that
the proof of the Lemma works for nets (¥(£,)) as well as for sequences. In
fact, the same is true for Theorem 2 in [6] and the main theorem in [7].
The construction of the Lemma yields sets (E,) and (A4,) satisfying the
desired properties. From [7] it follows that there exist convergent matrix
nets (M) and (N,) such that

I 0
MkEka:[ ]

0 A,
Ask O
MkAka: 0 I

where (A4 ,) and (4,,) converge and lim A, is nilpotent. From [6] we have

» I 0 Ay O e(lim A4,) 0 ]
([0 A;J’[O ID_{ 0 =X o H(lim Ag) |

Hence lim ¥(&,)elm ¥ and Im ¥ is closed.
To show density of & in Im ¥, simply note that

(L (n,0,0))=¢.
Density then follows from Theorem 4.
We are now in a position to prove that . is complete with respect to the
family {¥,..}-
THEOREM 5. If ({,) is a sequence in £ (n, m, p) with (¥, ,(¢,)) converg-
ing in Iy for every xoeR”, ue 27, then (¢;) converges in L(n, m, p).
Proof. Let w: & — £(n,0,0) be defined by
w([E, 4, B,C])=[E, 4].
Then
(Wl E}) = Pw(&r)) xo
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for every x,, where n: 2" "7 xR""7 — 9% projects onto the first n coor-
dinates. Hence, the Lemma guarantees that the sequence (w(&,)) converges
or, in other words, there exist sequences (E,) and (4,) converging to a
regular pencil with

(&)= [Ee, AL

It remains to show that there are convergent sequences (B,) and (Cy)
such that

ék = [Ek’ Ay, By, Ck]' (9)

Choose any (B,) and (C,) satisfying (9). (Indeed, there is only one choice
for each.) Appealing to the construction in the proof of the Lemma, we
have from (5) that for x,=0 and u=dv
e(Ay) By
Xp=Vy e(Ay) A5 By v
W, -

j=

a

where
By
T, 'B,= &
By
Since (V) converges and v is arbitrary,
e(Ay) By — Z\-
for some Y, e 27", Thus,

;k - <Z‘\" ¢>7‘<Zm ¢>

Next, we note that for some Z,

e(Al) A% 0 o (BT 5
W"[ 0o~z MHe, )7

We know that Aj, has eigenvalues 1, ., A4 With 1/4, —0. Hence,
feo @(2) e'** Ay, dt has eigenvalues

A = Aig LOO é(1) e**' dt

= —4(0)— [ " §(1) e d
- —¢(0).
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=245 (—1)" ¢'(0) A% has all its eigenvalues at — ¢(0) so, if we choose
$(0)#0,

o At (A g
W"PO W) AL di [ o ,]kaU
: 0 — 215" (=1)'¢°(0) 4

where U is a nonsingular matrix. Therefore,

B ~
AP REEAD

Jk

and

’

sk
B.=V o
k k Wk[ Ak:‘
By
also converges.

Finally, (C) converges since C,x, converges for every x,eR". ||

In summary, % is complete since convergence of solutions in (3) guaran-
tees convergence of system parameters. Also, % is the smallest completion
of Z" possible in the sense that #” is dense in % (Theorem 4) and that
there are only enough points in the singular submanifolds #°,.., #” ' to
distinguish the solutions of (3) (Theorem 3). Note that the parts of the
proofs of Theorems 3 and S dealing with the output matrix C depend
heavily upon initial information in ¥, ,. If such information is dropped, it

becomes easy to construct examples where Theorems 3 and 5 fail.

5. MISCELLANEOUS PROPERTIES OF #(n, m, p)

In this section we list some of the more obvious properties of the
manifold ¥ which have not yet been mentioned, and draw some connec-
tions with prior work done by ourselves and others. To begin with, besides
being an open dense submanifold of a certain Grassman manifold, there is
at least one situation where % has an even more familiar structure.

THEOREM 6. Z(1,1,0) is a Mobius band (without boundary).

Proof. The Mobius band # is the quotient manifold obtained from
S'xR, where S' is the unit circle in R2 by identifying
(%3, X2}~ (—=xy, —x3). £(1,1,0) is obtained from R> by identifying
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(e, a, b) ~ (me, ma, mb) for any m # 0. In view of (4), this yields real projec-
tive 2-space minus the b-axis. The map

—-—2—1—2 (e, a, b)}

[e,a,b]a{i
e“+a

is clearly an analytic diffeomorphism from #(1, 1, 0) onto 4. |

Let I" be a rectifiable Jordan curve in the complex plane, encircling the
origin, and X' < 2 the open subset of all systems with exactly r eigenvalues
encircled by I In [7] we constructed a real-analytic manifold 4 of
canonical forms for (3) and proved that the decomposition map d: X — %,
which associates with each system its canonical form, is analytic. The
following result establishes a deep connection between . and the construc-
tions of [7]. Let ¥=u(X,) and €r=d(Z ).

THEOREM 7. There exists an analytic diffeomorphism f. %r— Gy such
that

dlo)=f(u(o)), oc€X,.
Furthermore, ¥ and 6. are open submanifolds of ¥ and &.
Proof. From [7] we have that

d(E, A4, B Cy=(S, 4, B,,C,,F, A;, B;, C))

for some S@ F=R" and linear 4.1 S S, A,: F— F, etc. Also,
det(sE — A)=det(s] — A,)-det(s4,—I)
so d(o) e %, for any o € X',.. Furthermore,

d(E, A, B, C)=d(ME, MA, MB, C)

for any nonsingular M, so d induces a unique mapping
J &%
defined by
Sf(La])=d(a).

To see that f'is one-to-one, suppose that f([¢,]) = f([5,]) = (S.,..., C)).
Then from [4] there exists a nonsingular M, such that M,E,|S=1,
M1E1|F:A_/'a M A, |S=A4,, M\A|F=1, PgpM B, =B, Pl«‘sM131=B_p
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C\|S=C,, and C,|F=C, where 6,=(E,, 4,, B;, C,). Similarly, there
exists an M, satisfying analogous conditions with respect to ¢,. Hence,

(M1E1, M1A1,M1Bn C,),=(M2E2, MzAzaMsz» Cz)-

Letting M = M 'M,, it follows that o, ~0,.
In order to prove f is onto, let w = (S,..., C;)e % be given and define

sz{w weS AW:{Asw,weS
w, weckF
CW;JC“'W’ weS

|Crw, wePF.

Then f{[E, 4, B, C])=w and [ is bijective.

Since Zr=u(2 ;) and X, is open, &, is an open submanifold of . We
need only show that fand /' ~! are analytic to complete the proof. Consider
typical charts

¢:$__)Rn(n+m+p)
and
l//:(gﬂRn(n+m+p).

For example, we might choose charts ¢, and y, where

él([l, X, Yv Z]):(Xa Y3 Z)

1 7
l,b1 ([Wl],xb Ylszl;[W2]7X23 Y2> 22)

=(W, X, Y, Z; Wy, X5, Y3, Zy).

and

¢, is defined on the open subset of # where E is nonsingular. ¥, is defined
on the open set where S F=0 and S and F are spanned by the columns
of matrices of the form [,/ ] and [},,], respectively (see [7]). Let

! —1
P_Zmﬁr(s]—)() ds.

Also let

7]
T |

L*21
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be a fixed set of r linearly independent columns of P and
T12
2]

a fixed set of n — r linearly independent columns of 7/ — P where 7', and T,
are square. Then T, and T, are also nonsingular and P = Pg,. Define

I I
T:[T T T T“J
21 11 22412

[X‘ 0]=T‘XT
0 X,

Y
[1]=T*x (Z2,Z,]1=ZT.
Y,

Then
Yi(f@T XY, 2= (T T X0, Y0, Z Ty T X5, X5 'Yy, Z,y).
Since the T; are analytic functions of X and all other functions are rational,

W, ofodr! is analytic.
We can prove that ¢, o f “'oi; ! is in fact rational by simply noting that

di(f W WL XL YL ZG W, X, Y, Z,)))

X, 0 ] Y, _
= U'"‘,U 7 t
(o5 s ]o ol

where

U—_I I]
LW, W,

Other choices of ¢ and ¢ yield analyticity as well by similar arguments.
The only difference is in the choice of linearly independent columns in the
matrix [E A] and linearly independent rows in

TIIJ |:T12]
and . |
[7}1 T
It is interesting to note that the diffeomorphism f does not extend over
all of #. For example, it is easy to prove that, when n=m=1 and p=0,

taking either r =0 or r=1 yields ¥ = R% Theorem 6 shows that & is not
diffeomorphic to any piece of .
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A final observation concerns the connection between the manifold %
and classical singular perturbation theorey [13]. Suppose a
parametrization y: [0, 1] — & is given with ¥/(0) singular and y(e) regular
for e>0. Then ¥ represents an equivalence class of families

E(e) x=A(e)x+ Ble)u

y=C(g) x (10)
where E(e) is singular only when ¢=90. If, in addition, the functions E, A4,
B, and C satisfy some smoothness property (e.g., analyticity), (10) is
singulary perturbed. 1t is well known that analyticity of E, 4, B, and C is
not sufficient to guarantee convergence of solutions in (10} as e >0,

Our theory gives information regarding the converse. Suppose the coef-
ficient matrices in (10) are not smooth, but it is known that sclutions con-
verge. For example, the family of systems

1 1 1—¢

¢ = ¢ 13 NE (a1
0 sin- 0 — —sin—
e & &

has solutions

3
2 (e '—e ")y xg

where

As e > 0%, x,(t) » e 'xo,. Theorem 5 says that, for any sequence ¢, > 07,
Y(e,) > ¥(0) as k — oo. In other words, there exists a sequence (M) such
that premultiplication by M, produces convergent coefficients. In the
example, premultiplication of (11) by

7
sin 1/,

73

Mk=
£k

sin 1/e, |
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yields

Our theory enlarges the class of systems which we conventionally think of
as singularly perturbed to include systems such as (11).

6. CONCLUSIONS

Our constructions characterize the close relationships between regular
and singular systems in a coordinate-free, non parametrized context. We
have shown that the topological structurc of the class of all linear systems
(with bounded order), although not compact, can be naturally related to
familiar objects from differential topology (viz., Grassman manifolds). We
have also shown that such an abstract framework is a natural setting in
which to study singular nprtnrhnfmn problems

It is our intention to further explore the topological structure of the
manifold %, extending many of the existing results known for the space of
regular systems over the complete manifold. For example, such properties
as controllability and observability are known to be generic on the regular
submanifold. Many interesting questions arise regarding the properties of
the controllable and observable sets on .#. In particular, an understanding
of these sets is required before deeper connections between our work and
that of [1, 2] can be established.

It is our hope that the framework developed in this paper will be useful
as a basis for later work in a variety of areas.
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