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Equations of the form EX=Ax +u, with E and 4 square matrices and E
singular, are considered. The controversy that exists in the literature concerning the
solutions of such equations is investigated. Solutions are arrived at through an
application of singular perturbation theory.

INTRODUCTION

Recently, in certain areas of engineering and economics, there has been
interest in ordinary differential equations of the form

EX(t) =Ax(t) + u(t) (1)

[1-11], where E,4 € R"*" with E singular. It has been proposed in [3-7|
that such equations can be used to describe the behaviour of systems in
which a sudden change in structure or parameter values (e.g., as a result of
component failure or switching) occurs. The basic rationale is as follows:
Assume that switching occurs at ¢ = 0 and that for ¢ > 0 the physical system
is modelled by (1). If x(¢) is the response of the system for ¢ <0 (not
necessarily described by (1)) and x(t} - x, as t— 07, then x, may be inter-
preted as an initial condition which, together with (1), determines the system
behaviour at the time of switching and for ¢ > 0. Clearly, any value of x, is
possible since nothing has been said about the system structure for ¢ < 0.

The main problem with this approach is that, for certain initial conditions,
(1) has no solution. For this reason some authors [1-3, 11] have confined
themselves to the restricted class of “consistent” initial conditions for which
(1) does have a solution. Others [3—7] have proposed certain distributions as
“solutions” of (1) due to inconsistent initial conditions.
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To see the essence of the problem more clearly, a canonical decomposition
may be employed. We henceforth adopt the standard assumption (as in
[1-11]) that AE — A is invertible for some 1 € R. That is, SE — A4 is a regular
pencil in the sense of Gantmacher [12]. Under this assumption, (1) may be
written equivalently as

y(t)=By(t) + v(1), ()

DZ(t) = z(t) + w(t). 3)

If det(sE — A) has degree n — p then B € R =P X=P and D € RP*? with D
nilpotent. The vector [} ] is related to u() by a nonsingular transformation.

The solutions of (2) are well understood and the forced response of (3) is
given by

g1

z(t)=—\ Dw'(r),

i~0

where w' denotes the i-th derivative and ¢ is the index of nilpotency of D. It
is the natural response of (3) that is in question so we need only consider the
equation

DZ =z, 4)

The following result shows that in the conventional sense only one initial
condition in (4) corresponds to a solution.

PROPOSITION.  The only distribution that satisfies (4) is the trivial
distribution.

Proof. Let a distribution z satisfy the equation. Then
D'z =D%=0.
Proceeding inductively, assume that D? %z = 0 for some 1 < k < q. Then
D=1z — pI=kz — (DI=kz) = 0,

Hence D%z =0. |1

To account for nonzero initial conditions various arguments have been
employed. Doetsch |7]| states that we should actually be considering the
equation

DZ=2z+6 Dz,, 4)
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which has solution

q—1
D(zy)=—> 0 ' D'z, 6)

i=1

Note that, in light of the proposition, @(z,) is not a solution of (4) in the
conventional sense unless Dz, =0. Also, the value of @(z,) at t=0 is not
defined so it is not clear that calling z, an initial condition is justified.

Verghese et al. [4-6] agree with (6), basing their arguments on the
application of the Laplace transform.

The purpose of this paper is to take a somewhat different approach to the
problem. We also agree with (6), but we choose to approach it via singular
perturbation theory |13], treating (4) as the limit of a sequence of less
ambiguous systems. In this way it will be shown that there is a natural inter-
pretation of @(z,) in terms of systems approximating (4). Also, z, will be
seen to arise from the initial conditions of those approximations.

PRELIMINARIES

It is assumed that the reader is familiar with the theory of distributions
I14,15]. In this section we summarize any nonstandard definitions and
notation that will be needed later. We denote by K'? and K'?*” the spaces of
vector and matrix distributions, i.e., the R-vector spaces of continuous linear
transformations from the space K of test functions (as defined in [14]) into
R? and RP*?, respectively. Let C¥* and C}*P* be the continuously differen-
tiable mappings from [0, co) into R? and R”*?, using right-hand differen-
tiation at the origin. C2* and C%*?* can be naturally embedded in K’ and
K'Pxp,

The Dirac delta of magnitude ¢ is defined by

(0o, ¢) = ¢(0)o

for all ¢ € K where either ¢ € R” or ¢ € R”*?, The derivative of f € C* or
/€ CP*?* may be defined in two ways: Let f denote the derivative of /'in the
distribution sense and let /" be its derivative in the ordinary sense (right
hand at the origin). Then

f=r%+ 0.

K'? and K'P*? become topological vector spaces when the standard
topology is defined. One basis of neighbourhoods of the origin is the
collection of all sets of the form

U, =1/ 150l < 1),

where ¢ ranges over K.
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For veR?, M € R**?, f€ K'?*? and g € K'? define

(fo, ¢) = (£, $)v,
(Mf, ) =M(f, ),
(Mg, ¢)=M(g.9),

and let e(M) € C}*P* be given by
e(M)(t) =e™.

We will need the theory of Fourier transforms as developed in [14]. Let C
be the complex field and denote by Z'? and Z'”*” the C-vector spaces of
continuous linear functionals on Z with values in C¥ and CP*?. A
homeomorphic isomorphism exists between Z’” and K'? and is given by

(g’ '7’/) = 27”(/; ¢)3l

where g € Z'? corresponds to f € K'¥ and y € Z is the transform of ¢ € K
(in the conventional sense). Finally, we note that if A is a straight line in C
parallel to the imaginary axis and 4 € R”*? is nonsingular with eigenvalues
Aysn 4, satisfying Red; <Res for all s€ A then e(4 ') has transform
g E Z'"*P given by

(& ¥)={ (=) —1) "4 ds. (M

If 4 is nilpotent with index of nilpotency r then —3 /- 5 ~'4" has transform
also given by (7).

THE LIMITING SOLUTION

In attempting to justify (6) we will consider (singular) perturbations of the
system (4) and see how the corresponding solutions vary. For example,
consider

D:[g (1)] ®)

' Actually, we define y(s) = [®,, ¢(r) e~ dt which corresponds to a 90° rotation of the
plane relative to [14]|. Consequently, our formulas differ slightly from those of {14].
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If we approximate D with nonsingular matrices

N

y n=1,2,3,.,
1
O T J
n

then the approximating systems

D

D,z"=z, )

have well-defined solutions

—nt _nZteAnt

e
20=% T o
Considering only ¢ > 0, we have z, € C}* and

2, [ _‘Z] (10)

in the K'? topology where

2(0) = [Z‘” }

Zo2

We would like to say that the limit in (10) is the “solution” of (4) when D
is given by (8). From a physical viewpoint this is reasonable since the
physical system described by (4) is, in reality, probably described more
precisely by (9). That is, (4) can be considered an idealized model of a
higher-order system.

With these thoughts in mind we make the following definition:

DEFINITION.  z € K'? is a limiting solution of (4) with initial condition

Yl + 7.7 SR T S 7 o 0 I T ) yotals Ty G oaafL1
29T 407 1 WICTC CXISL SCYuclces 2, ,\V)— 2, ana L, — L Wil L/, 1Hveluvic
such that the solutions z, of (9), subject to initial conditions z,(0), converge
to z in the topology of K'”.

Several questions come to mind immediately. First, can (4) always be
perturbed in a nonsingular manner so that the corresponding sequence of
solutions converges? In other words, does a limiting solution always exist?

Second, is the limiting solution unique? In general there are infinitely
many ways to perturb (4) so that the solutions converge. It is not clear
whether different approximating sequences yield different limits of solutions.
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There is also a third important question which we leave until the next
section. We now treat existence and uniqueness.

—1
Lemma 1. If D, — D with D, invertible and o, = [T || DX e | dt is a

bounded sequence for some nonnegatwe integer k then the solution of (9)
with initial condition z, converges to P(z,) as n— co.

Proof. Let ¢ € K. Then there is a real number M such that |¢(¢)| < M for
all tER so

D3+ e(D; 0. 0N < [ 18N I1D5* e dr
<M|Djl a,.

Hence DI e(D,')— 0. Next, letting e(D;')*** denote the (q + k)th
derivative of e(D, ') considered as a distribution, we have

e(D, YK =D T e(Dy Y+ 0D T 4o SR
q+k

e(D;‘):DZ“‘e(D,‘,")‘”"w : 5i—1D2.

i=1

Thus
q+k ) ) -1 .
e(Dnil)"*_E 51—1D1:_: 51—71D1
i=1 i=1
and

Zy= e(Dn_l)an D(z). 1

LEMMA 2 Let D, =D— (1/n)l. Then the sequence «a, =
©|IDk ey | dt is bounded Jor some k.

Proof. Since

1 —1 qg—1 ) )
(D““——I> :::—Z n’+1Dl,
- n i=o
we have

g—1
_ ~1 - T _pitiypi
el(D (/min —e nt I ] e nt tl)l'

i=1
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If k> q—1 then

g—1 k—i qg—1 G-1 ¢ i+ 1y
x (‘L) o'[1T] % o
i—o n i=1 | j=0 J:

q—1 q—1 g—1 i+ 1\
. Y (mm

e N =Dl | X )
n i1 j: .]

1D} el < e

1)
i=0
- N
pa— Al 3 i .7
=e L Noeun't
==k j=0

for some constants M, N, and c;;» Then

M—k N @
a, < ,\1 Noeyn J e ™dt
A.__l o
=k j=0 0
M~k N
N A i—j1
ST

=~k =0

Set k=max{M —1,q—1}. |

Applying the definition we now have

THEOREM 1. For each z,€ R?, ®(z,) is a limiting solution of Dz =z
with initial condition z,.

If Eq. (4) were arrived at as part of a singular perturbation problem, it is
most likely that the sequence (D,) considered in the development of
Theorem 1 was not the one actually encountered. However, the issue here is
whether any sequence (D) exists that gives ®(z,) as a limiting solution.
Having established an affirmative answer to this question, we may now
consider the effect of other approximating sequences. That is, we need to
address uniqueness of the limiting solution.

THEOREM 2. The limiting solution of DZ =z with initial codition z, is
unique.
Proof. Let D,— D with D, invertible. Also let
z,=e(D; )z, fEK'P,
From

e(D,"Y=D;%eD,)Y+6D) T+ ... 577
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it follows that

q
z,=Dle(D;")zy— Y §7'Diz,

i=1

q

—PD9,9 .\ si—-1 pi

=Dizi— > §'Diz,
i=1

-0 f+ D(z,)

SO

S=9(z). 1§

UNREASONABLE PERTURBATIONS

The third question we must deal with concerns certain pathological
approximations to (4). For example, suppose that in (9) we were given

Dn:| & | J (11)
0 —
n

Then the resulting sequence of systems would exhibit instability increasing
without bound as n — oo. It is not resonable to think that this system would
yield any sort of limiting solution. However, since the system determined by
(11) has solutions that diverge on the entire half line [0, oo), we would not
expect that the limiting system (4) would be a good idealization of (9), (11)
to begin with.

To generalize this, note that for all systems of interest, when ¢ is outside a
neighbourhood of the origin (i.e., after switching transients have died away),
the system behaviour is unambiguously determined by (4). The Proposition
and Theorems | and 2 show that the solution must be zero. Only in the
vicinity of +=0 is the system response questionable. Thus, if an approx-
imating sequence D, is chosen which does not result in solutions converging
to zero on some subinterval of (0, o0), it can be disregarded as being
pathological. Its existence does not constitute an argument against the
validity of @(z,) as the solutions of (4).

We claim that convergence of the solutions of (9) to zero on some subin-
terval of (0, co0) is in fact sufficient to guarantee that they also converge on a

neighbourhood of the origin. To prove this, a few preliminary results are
needed.
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LemmA 3. Ifs,A€ C, and r > 0 satisfy |s — A| > r then

i [A]
1+—is|>—+—.
M vy
Proof. The result follows from elementary arguments.

LEmMA 4. Let w € Z and A be a p X p matrix, either nilpotent or inver-
tible with eigenvalues 1,, i = 1,..., p, satisfying

Re A, < max {0, N In

[Im 2| §
c

Sor some ¢ >0, N < 00. Let I' < C be the path parameterized by

o) =r+ix if x€l[~(c—r)e™, (c—r)e™],

x| ) . o < e
=Nln——+ix if XER—|J—(c—r e, (c—r)e’™),

where r > 0. Finally, let A < C be any straight line parallel to the imaginary
axis and satisfying Re A, < Res, i=1,2,..., p, for any s € A.
Then

J' w(—s)(sd — 1) 'A ds

exists and equals
f w(—s)(sd —1)"'A ds
A

Proof. For some o0 €E R,
J w(—s)(sA —I)"'d ds = lim ij y(—o — ix)((o + ix)A — )" '4 dx.
A moow  J_
Let

I,=1{sE€T]||Ims| < m}.

If m>(c—r)maxie™,e’N} then Rey(m)>oc and, because of the
assumptions on the 1;, Cauchy’s theorem yields
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if " (o — ixX)(@ + iX)A —1)"'A dx

Re y(m)

=L

+ j w(—s)(sA — 1)~ A4 ds
I'y

w(—x + im)((x —im)A — 1)~ '4 dx

fRe yim)
Since w € Z there exist §,a, > 0, k=0, 1, 2,... such that

e[}ll{esl

ly(—s)| < e s

w(—x —im)((x + im)A — 1) "'4 dx.

for all s € C (see [14]). Let

A= e im)(x — i) — 1) A d
= y(—x + im)((x — im)4 —I) x.

m

Assume A is invertible and let & >ﬁN; Then

Re y(m) eGlxl
'Am|<j akmll((x—{him)I—A")“'de

eB Re y(m)
< (Rey(m) — o)ay ——— sup [[(x +im) I —A4~")""||
m XxeR

m BNk ) o
= (Nln-——a)akmigg ((x+im)I—A4~"71

-0 as m-— oo.

Assume A is nilpotent with index of nilpotency r and set k > N +r— 2.
Then

r—1
(sA—D"'"A=-> 574"

i=

—

SO
‘ ‘ Re y(m) PL ril , ity
Aa <J Q) ——gr————— 1(x +m)’_ HAH'dx
ml~x Y k(x2+m2)k/2 =
r:l A i
< (Rey(m) — o) oy eBRe7m ”k—lil+l

im
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_ (v mBN r{‘l HA”:
- ( nc—r U)ak (C———I‘)EN iﬁmkfiﬂ
-0 as m— 0.
Similarly,
Re y(m)
j w(—x —im)((x +im)A —I)"'4 dx - 0.
Note that
Y(x)=1i if x€|—(c—r)e”™, (c—r)e™],
=N/x+i if x€|—(c—r)e™, (c—r)e"™],
and let

Q(x) = 9" (x) y(=p())y)4 — 1)~ 'A.
For A invertible and k£ > N,
loei <1+ T I 1—a |

/‘-_ |x [PV
<A1+ zak(an(y(x)l AT,

For A nilpotent and k& > N +r — 2,

T A7 BRey(x) r—1
|m(x>||<J1+f T S I Al

[N P Al
SNV S AR

In either case, £ is integrable on (—oo, o0) and

j w(—s)(sd —I)~'d ds = j Q(x) dx.
r — 00
By the dominated convergence theorem,

f Y 0(x)dx = lim [ y(-s)(s4 —1)"'A ds

=i lim w(—0 — ix)((0 + ix) A —I)"'4 dx

m—co J_

- J w(—s)(sA —I)"'4 ds.
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LemMma 5. If [a,b] is a subinterval of (0, 0) and e(D,;')— 0 on |a, b]
in the L' topology then the eigenvalues A, i=l,...,p of D;' satisfy
Re 4;, » —o0.

N . - -1
“Ain is an eigenvalue of e,

Proof. Since e
e ReAin < HetD;‘ ”
Hence

b b -
j et Redim gy q e || dt - 0.
a a

jviel

b

tReA;

e ndf = ———
L Re 4;,

=b—a if Rel;,,=0

(ePRedin — gaRedin) if Red,, #0,

so the desired result follows from elementary arguments. [

We are now in a position to prove the main result of this section.
Together, Lemma 5 and Theorem 3 show that whenever a small perturbation
of (4) gives a solution close to the desired zero solution on a subinterval of
(0, 0), the approximating system approximates the idealized system
response in the vicinity of ¢ = 0 as well. Theorem 3 is also a generalization of
a theorem by Francis [16].

[ A

HEOREM 3. If the eigenvalues A,, of D, " satisfy
Im4,,|

Re 4, < max ]0, N In ——
c

Jor some N, ¢>0,i=1,.,p,and n=1,2,3,..., then
a1 ‘
e(D;HY—>— }_j o' D,

i=1

Proof. We will show that the Fourier transforms of e(D, ') converge to

that of —)27- 6" D' in the topology of Z'”. From Lemma 4 we need only
show that

J w(—s)sD,—1)""' D, ds ~+J w(—s)(sD —1)"'Dds
r r

for any w € Z.
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First note that
(sD,—D"'D,»(sD—-1)"'D

pointwise on I". Thus
[ wis)sD, ~D ' Dyds={ 9, x)dx
r — 00
S [T Y@ w0 D - D'D dx

= j w(—s)sD—I)"'Dds. 1

The conditions of Theorem 3 are significantly more general than needed to
link it with Lemma 5. However, the complexity of the proof is not reduced if
the conditions are weakened. Moreover, Theorem 3 may be useful in other
branches of singular perturbation theory where more general types of eigen-
value behaviour are present.

CONCLUSION

We have presented three main results offering further justification of
®(z,) as the solution of (4) due to initial condition z,. The singular pertur-
bation approach is somewhat more intuitively appealing than the arguments
used by other authors to arrive at the same result. This approach allows one
to convince oneself of the actual system response by considering a
nonidealized approximation to the singular equation. From the results we
have presented it is clear that for a given initial condition there is always
precisely one meaningful solution to (1). This solution has been designed in
such a way that it is justified not only mathematically, but from a physical
viewpoint as well.
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