ON REALIZATION THEORY FOR GENERALIZED
STATE-SPACE SYSTEMS OVER A COMMUTATIVE RING

J. DANIEL COBB*

Abstract. The problem of finding a state-space realization for a given rational
matrix over a commutative ring is considered. To simplify the problem, we assume a
certain factored structure for the denominator polynomials in the matrix. OQur main
results state that this class of matrices is a module which can be decomposed into
two independent and isomorphic submodules, each realizable via existing results for
strictly proper matrices. Any rational matrix with factored denominators can be realized
through this decomposition.
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1. Introduction. The theory of generalized state-space systems has
been developed extensively over the past decade [1]. Most of this work has
centered around dynamic system equations of the form

Ez = Az + Bu

(1)
y=Cz

and their transfer function madtrices
(2) H(s)=C(sE - A)™'B,

where E, A, B, and C are real matrices, E and A square. In this paper we
initiate the study of such systems over a commutative ring R. In particular,
we are interested here in the algebraic aspects of the problem of finding a
dynamic system (1) which realizes a given rational matrix (2) over R.

One motivation for examining generalized state-space systems in an
algebraic setting comes from singular perturbation theory. If the class of
rings R to be considered is chosen to reflect a “perturbational” structure
in (1), then those classical results in singular perturbation theory which
rest on purely algebraic arguments can be exposed. Several examples of
“perturbational” rings follow:

1) Convergent sequences {z;} in R under the equivalence
{zr} = {yx} iff z} = yi for large k.
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Addition and multiplication are defined by
(we] + [ye] = [zk + 1]

(ze]lye] = [zeyil-

2) C" functions z : U, — R, where U, C R is a neighborhood of 0, under
the equivalence

z ~ y iff 3 a neighborhood U C U, NUy of 0s.t. =y on U.

[z + ¥l = [z + 9]
[z][y] = [zy]

3) Analytic functions z : U, — C with U, C C connected, using the same
equivalence as in 2). In this case, any two equivalent functions are
restrictions of a single function.

An important feature shared by these examples is that each ring con-
tains an ideal P satisfying the property that 1+ & is a unit of R whenever
z € P. In example 1), one choice of P is the family of sequences converging
to 0. In 2) and 3), the set of all x with £(0) = 0 plays the same role. We
need not restrict ourselves to these examples, however, to find such ideals.
Indeed, for any ring R, the Jacobson radical J is characterized by

J = {x € R|1 + zy is a unit for every y € R}.

The ideals mentioned relative to 1)-3) are just the Jacobson radicals for
those rings.

In order to talk about rational matrices over R, we need to first consider
the ring R[s] of polynomials over R and the subset D C R[s] given by

D={AcR$)|A(s) = u(s" + ar_15"" 1 + -+ aog)(bys? + -+ bs
® +1),b; € J,u is a unit of R}
D may be viewed as the product of the two sets
D, = {A € R[s]|A(s) = u(s" + ar_18""1 + -+ ao), u a unit}
and
D; = {A € R[s]|A(s) = u(bgs? + -+ -+ bys + 1), b € J,u a unit}.

Note that D is multiplicatively closed. We now established another
useful property.
THEOREM 1.1. D contains no zero divisor of R[s].
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Proof. 1t is easy to see that each A € D is of the form

(4) A(s) = v(cqers™ + -t epp18T 5"+ a8 4+ o),

where ¢,41,...,¢44r € J and v is a unit. Suppose A(s) = dis* + .-+ dp
1 anv nalvnamial aver R anch that AN — 0 Then
is any polynomial over R such that AX = 0. Then
do
r =0,
dg
where
1 Cr—-1 " Cr—g
F — CT+1
Cr—1
Crik o Crgl 1

(Whenever ¢ < 0 or ¢ > q + k, ¢; is replaced by 0.) A simple calculation
shows that det " is a unit; hence, A = 0. O
Thus the R-module of fractions

—1 Iz
D Mﬂ_{AMEMQAED}
is formed by imposing the equivalence relation
(.'131, Al) ~ (.’L‘z, Az) iff 1,‘1A2 = :L'zAl

on R[s] x D and passing to the quotient set, using the standard operations
for rational functions. (See [2, p. 36].) Note that H(s) in (2) belongs to
D~!R[s] whenever det(sE — A) € D.

2. Decomposition of D™! R[s]. The main result of this section shows
that the R-module D~!R[s] has a natural decomposition commensurate
with the factored polynomial form assumed in the definition (4) of D. Let

‘Hs = {h € D~!R][s]|h is strictly proper and has a representative
with denominator in D,}

and
My = {h € D~'R[s)|h has a representative with denominator in Dy}.

Clearly, H, and H; are R-submodules of D~'R[s], and R[s] is an R-
submodule of H;
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THEOREM 2.1. D™'R[s) = H, ® H;
Proof. Suppose
_ kst + -+ cp

h(s) =
(3) u(s’+ar_18’"1+---+ao)(bq3q+“'+bls+1)’

where k > max{q +r— 1,7}, b; € J, and u is a unit. (There is no loss of
generality in constraining k, since some of the leading ¢;’s may be 0.) Let

{1 0 0 7
b . ag 0 0
: 1 : :
Forrr bl bl [T | ar-1 0
w — . X — 1 ag
Y 0 ? VA )
0
bq
0 ar—1
' K 01|
| 0 0 ]

where W ¢ Rrxr,X e Rrx(k—-r-}-l)’y c R(k—r+1)xr’ 7€ R(k—-r+1)><(k—r+1).
Note that det W = det Z = 1, so

w X |_ _ Ly o1
5) det [ v ] = det(] - YW™'XZ"1),
Since Y € J(F~m+1X7 the determinant (5) is a unit. Let
Fd T
. wox 1]
r—1 _
©) e | [ Y 2 ]
ck
[ Ck—r |

Equation (6) is equivalent to writing h = h, + hy, where

dpois™ 4ot dy
7 hs(s) = r
(7) (s) s +ar_185"" 4 4ag
and
®) hy(s) = St e

bes? 4 -+ bys+ 1
Clearly, h, € H, and hy € H;.
To verify independence of H, and H;, choose h € H, "H;. Then h

has both forms (7) and (8) simultaneously. Thus ¢ = » = 0 and, since h is
strictly proper; h=0. 0O
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3. State-Space Realizationin D~} R|[s]. Given H € (D~ R[s])?*™,
a 4-tuple (E, A, B, C) of matrices over R is said to be a realization of H
if H(s) = C(sE — A)"'B. For E € HEX™, it is shown in [3, Ch. 4]
that there exists a realization of the form (I, A,B,C). If H € 'H’}X"L,
we may exploit this result with the aid of the following construction.
Let d : (D71R[s])P*™ — (D™!R[s])**™ be defined by applying the map

h(s) — —;h(;) to each entry of the matrix. (The manipulation of the

indeterminate s is formal.)
THEOREM 3.1.
1) d is a module automorphism on (D~ 1R[s])P*™ .
2) d maps 'H’f’xm isomorphically onto HEX™.
Proof. 1) Direct calculation shows that d is linear and that do d is the
identity map.
2) It suffices to show that d(’li?xm) C HEX™. Let h € H;. Using the
notation in (8), and assuming k > ¢ + r, we obtain

1h 1\ _ —egs*TT — .~ e,
s \s/ Pl bysk ... byskor—atl?

which belongs to H,. 0
Suppose H € ’H’}xm. Then d(H) has a realization (I, A, B, C). In fact,
this realization satisfies

-1
C(sA-I)"'B= 1o /11 - A\ B=—
s \s" )
so (A4,1,B,C) is a realization of H. Combining Theorems 2.1 and 3.1
enables us to realize any H € (D~!R[s])?*™. Indeed, we may decompose
H = H,+ Hy and choose realizations (I, A,, B,, C,) and (I, Ay, By, Cy) of
H, and d(Hy), respectively. Defining

_ IO _ As 0 _— Bs —
b 5 Joas [ ) 0 (5] o=

we have
C(sE — A)"'B=C,(sI — A;)"'B, + C4(sA; = I)"'B; = H,+ H; = H,

so (E, A, B,C) is a realization of H.

4. Conclusions. We have presented a general algebraic treatment of
the state-space realization problem for rational matrices H over a commu-
tative ring, provided that the denominators of the entries of H are of the
form in (4). For arbitrary rational matrices a factorization theory would
have to be developed for polynomials whose leading coefficients are mem-
bers of the Jacobson radical, followed by a unit.
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Another important problem that shows promise is that of developing
an algebraic version of the Weierstrass decomposition for regular matrix
pencils over a ring. Here the definition of regularity would undoubtedly be
critical. One possibility would be to call a pencil regular if its determinant
polynomial is of the form (4).

REFERENCES

{1} F.L. Lewis, A survey of linear singular systems, Circuits, Systems, and Signal
Processing, Vol. 5, No. 1, 1986.

{2] M.F. AT1ival, I. G. MacDONALD, Introduction to Commutative Algebra, Addison~
Wesley, 1969.

[3] J.W. BREWER, J.W. BUNCE, F.S. VAN VLECK, Linear Systems over Commutative
Rings, Marcel Dekker, New York, 1986.



