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Feedback and pole placement in descriptor variable
systems¥

DANIEL COBBj

The effects and uses of applying linear foedback to continuous time descriptor systems
are studied. Structural changes resulting from feeding back the slow and fast parts
of the trajectory separately are charactorized. It is shown that under certain condi-
tions related to controllability the poles of the slow subsystem may be shifted
arbitrarily and the impulsive behaviour of the fast subsystem may be ecliminated.

1. Introduction
In this paper we consider the continuous time descriptor variable system

Ez=Ax+ Bu 1)

where B and A4 are real n x n matrices and B is real » xm. Such systems were
first considered in the frequency domain by Rosenbrock (1974) and then in
both discrete and continuous time by Luenberger (1977), Campbell et al.
(1976), Campbell (1977), Yip and Manke (1978), Verghese (1978) and Verghese
et al. (1979). Most results have centred around existence and uniqueness of
solutions and modal decomposition. A theory of controllability was proposed
by Yip and Manke (1978). Many examples of systems where descriptor
modelling can be used to advantage were proposed by Luenberger (1977).

Our goal is to extend the theory into unexplored areas. In particular,
we are interested in the effects of applying the linear feedback law

u=Kr+v (2)

to (1) where K is an m xn matrix. It will be seen that the standard pole
placement results concerning the application of (2) to state variable systems
can be generalized. In fact, not only can finite pole shifting be accom-
plished, but (2) can also be used to influence the infinite poles of (1), as defined
by Rosenbrock (1974).

Most of the results that we will obtain will be easier to conceptualize
from a coordinate-free or geometric point of view. Thus (1) and (2) may be
viewed as relations on real euclidean spaces X and U with dimensions » and
m respectively taking £ and A4 to be linear transformations on X, and B a
linear transformation from U into X.

The canonical analytic decomposition of the pencil Es— 4 (Gantmacher
1964) was first applied to (1) by Rosenbrock (1974). In keeping with our
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1136 D. Cobb

coordinate-free philosophy we introduce here the canonical geometric decom-
position of (1). As done by Rosenbrock (1974) we henceforth make the

standard assumption that there exists AcR such that

det (AE— A4)+#0
Let

det (Bs—A)=¢ H §—A

where ¢ 0 and 7% j implies A;# A, let o(H, 4)={2,, ..., A}, and let

k
= Z n’b
i=1

Then n, is simply the multiplicity of the root A; of the polynomial (4).

A satisfies (3) then from (4) AMo(E, 4) and we may define

& 1 n
S= 2(2-91 Ker (()\E’—A) Py )

and
F=Xer (\E - 4A)E)».

®3)

(4)

()

Clearly S8 and F are (AE— A)'E-invariant subspaces. The proof of the

following decomposition theorem is presented in the Appendix.

Theorem 1

(i) S@F =X with dim §=r.
(ii) Let J,=(AE— A)E|S, Jy=(AE— A)E|F.

Let M be the linear transformation on X defined by

_ Jile if zeS
Mx=

(Ay—I)" 1 if xel
and M = M(XE — A)t. Then

(@) S and F are both M E- and M A-invariant,
() ME|S=I, MA|F=1,
(¢) Ly=M E[F is nilpo‘oent

(d) det (Is— H (s— A;)™ where Li=MA|S.

Let P and @ be the projections on S along F and on F along S respectively.
Letting (1) have initial condition x,, Theorem 1 allows us to decompose (1)

by applying M to both sides yielding

Zy=Lax,+ B, i.c.xy
and

Lg;=z;4+ B, ic.zy
where zg,= Py, %o =Qx,, B;=PMB and B;=@QMB.

(8)

9)
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The solution of (8) is well known. Controversy exists, however, regarding
the solutions of (9). Some authors (Campbell et al. 1976, Campbell 1977,
Yip and Manke 1978) allow only one initial condition ,, in (9) and hence
only one solution for each choice of u. The theory has been generalized by
Verghese (1978) with formal justification by Cobb (1981) to allow arbitrary
initial conditions. Following along these lines we adopt the generalized
solution of (9)

q—1 i=1
ry= — ; SILE g, — i:z() L Bt (10)

where ¢ is the index of nilpotency of L,, § is the Dirac delta, and &8¢, »¢ denote
the ith derivatives. As employed by Campbell et al. (1976), Campbell (1977),
and Yip and Manke (1978) the restricted solution is the same as (10) but
without the first term.

The form of (10) suggests that in any conventional sense the dynamics
of the overall system are concentrated in (8). Hence the A; can be thought
of as the (finite) eigenvalues of (1). The form of the unforced parts of the
solutions of (8) and (9) suggest the labels ‘slow ’ and ‘fast ’ subsystems for
(8) and (9). The decomposition will be valuable in developing the theory
needed for choosing appropriate pole shifting feedback gains K.

A geometric theory of controllability was introduced by Yip and Manke
(1978) using the restricted solutions of (9). The theory is based on the
standard concept of reachable states with respect to a class of smooth controls.
We may take this class to be the C® mappings from [0, o) into U. Since
reachability is defined for ¢>0 and since the restricted solution of Campbell
(1977) and generalized solution (10) differ only about the origin, the theory
of Yip and Manke (1978) may be applied to our situation with only minor
changes. For details see the work of Cobb (1980).

The main results concerning controllability that we will need are (i) that
the sets of reachable states #,=8 and %,< F of (8) and (9) respectively are
subspaces and (ii) that #=%,®%, is the set of reachable states of the overall
system (1). Although 2, and %, are defined with respect to the C* controls,
they are basically objects related to the structure of the system. In fact,
it will be seen that these subspaces play an important role in questions related
to linear feedback where, due to the nature of (10), controls which are not
smooth may appear.

Before attacking the details of the closed loop structure of (2) combined
with (1) we will state a useful result. It can be viewed as the geometric
form of the tests for finite and infinite decoupling zeros as introduced by
Rosenbrock (1970, 1974). The proof is given in the Appendix. Recall that
an eigenvalue A; of subsystem (8) is said to be controllable if its eigenspace is
reachable, i.e. Ker (A\,] — L)< Z,.

Theorem 2
(i) An eigenvalue \;ca(E, A)is controllable with respect to (8) if and only if
Im (ME—A4)+Im B=X
(ii) Subsystem (9) is controllable (%,=F) if and only if
Im E+Im B=X
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2. Linear feedback
We are interested in properties of the closed loop system
Ei=(A+ BK)x+ By (11)

which results when (2) is applied to (1). To ensure that (11) is a well defined
system we must make the analogous assumption to (3) that there exists AR
such that

det (A — A4~ BK)#0 (12)

Henceforth we will denote by Sy, ., 2y, Ly, ete. the corresponding subspaces
43 N n_}

and franafarmations ¢ :
and transformations of the closed loop system
An important result in its own right and one that we will use later is the
following.
Lemma 1

The controllable subspace % is invariant to linear feedback. That is,
R =R, for all K satistying (12).

Proof

We know from Campbell et al. (1976) that for each xS and each ueC®
there exists a unique C® map ®(x,, w, +) from [0, o) into X satisfying

E %E; =A®+ Bu, P®(xy, u, 0) =2

Tet weZ. Then there exist ueC® and 7> 0 such that ®(z,, u, 7)=w. Let
o(t) = — K®(x,, u, 1)+ u(t)
Then, applying » to the closed loop system, we have
Ei=(A+ BK)x+ Bv=(4+ BK)x— BK®+ Bu

Clearly, for initial condition zy, x=® so x(r)=D(xy, u, 7)=w, we#,; and
R<R,. Reversing the argument gives ;<. [

Little else can be said in general about the effects of arbitrary linear feed-
back. However, for our purposes it will be sufficient to consider only
feedback of the slow and fast trajectories x; and x, separately.

3. Slow feedback
Let K satisfy

Ker K< F (13)
and let
K. =K|8 (14)

Then (2) becomes
u=Kax +v (15)
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Choosing bases of 8, F' and U, and letting L, L, B,, B, and K, be the matrix
representations of the corresponding transformations gives

l,—L,~BRK, 0
) (16)
- BR, Lgs—1
Since det (Lys—1I)=(—1)"7, (13) implies that (12) holds. The closed loop
system

Mat (M s~ MA — MBK)= [

MEi=(MA+MBK)x, ic. (17)

has eigenvalues identical to those of L,+ B.K,. In (17) premultiplication by
M or M-1 has no effect on the solutions. Since subsystem (8) is a state
variable system with controllable subspace %, we have the following result.

Theorem 3

An eigenvalue A; of the descriptor system (1) can be assigned arbitrarily
by applying slow feedback without influencing the remaining eigenvalues if
and only if A, is controllable.

For arbitrary linear feedback it is difficult to make general statements
concerning the closed-loop structure of the overall system. However if only
the slow part of the trajectory wx, is involved the resulting fast subsystem is
essentially unchanged. This fact acts to simplify the calculations required
to decompose the closed-loop system. The following theorem makes this
precise.

Theorem 4
If Ker K> F then Iy =F, L, =L, and Ry, = %,.

Proof
Let AeR —(o(E, A)Uo(E, A+ BK)). Then
Mat (A¥ — A — BK)'E)

Clearly,
F,=Ker ((A\E—-—A-BK)'E)»"=F

Also, Ker K> F implies

(AE—A—BK)'E|F=(AE—-A)E|F
so from the construction in (ii) of Theorem 1,

My F=(My—1)t=(My—I1)r=M|F
and

L, =M E—~ A~ BE)E|F =M(MAE - A)"E|F =L,

Finally, Zy;, =2, F;, F;,=F and Lemma 1 together imply 2, =%;. |
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4. Fast feedback
Let K satisfy

Ker K58 (18)
and let

K,=K|F (19)
If K, is the matrix representation of K, then

Is—I, - B,R,
Mat (MEs— MA—- MBK)= (20)
[ 0 IZ,S—I—B,K,]
Jlearly, the eigenvalues of the open-loop system are also eigenvalues of the
closed-loop system. But det (L;s—I— B;K;) may not be a constant poly-
nomial so fast feedback may induce additional eigenvalues in the system.
In this case assumption (12) is equivalent to

det (AL, — 1 — B,K,)#0 (21)

which we will adopt.
Let

»
det (Lys —1 = B;K ) = T] (s Biym (22)
with #0. An additional assumption that we will need is that none of the

induced eigenvalues is equal to any of the other eigenvalues of the closed
loop system. That is,

Bi# A Vi, (23)

This assumption allows the following decomposition result.

Theorem 5
Let

@=

Dy =

i

1 g
Ker | (\E— 4 — BK)'E — I)
( =

1

fi

Then
(l) Sk:IS@Dk,
(ii) S and D and both M, E- and M, (A + BK)-invariant with

M (A+ BEK)|S+L,
(iil) Zy=R,®D,.
Proof
We have
Mat (AE — A — BK)1E)
[()\I —L)' (M~L)BR\L,—1I- E,IZ,)—IE,]

0 (\L;~I-B,R)-L,
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From (22) and (23) (AL,—I— B;K,)*L;—(A—A;) I is invertible. (That the
eigenvalues of (AL,~1I— B, K7L, are 1/(A—f,) can be seen from the proof
of Theorem 1 in the Appendix.) Hence

k ny
S= @® Ker((\B—A—BK)'\E———1
2 Y

and (i) follows from the definition of D,.

Appealing to the algorithm in (ii) of Theorem 1 we have that § and D,
are (AE— A — BK)‘E-invariant, J,,- and M, -invariant, and hence M E-
invariant. From

(AME~A~BEK)YY A4+ BK)=AMA—-A—-BK)1E—-1
M,(A + BK)-invariance of S and D, follows. From (18) if 28 then
Ex=(M—-A—BK)YAE - A—BK) \Ex= (A~ AYAE - A—BK)'Ex

S0
(AE — A)'E|S=(AE— A - BK)'E|S
and
Mk[S=J,_k‘1[S=Jl“1[S=M[S
Hence

M (A+ BEK)|S=M(ME—A— BK)™(A+ BK)|S=M(NAE - A)'E-1)|8
=M(AE—-A)14|8=L,
Finally, to prove (iii) observe that
Im (BME-MA—-MBK)+Im MB=S®(Im (8,L;—I—B;K,)+1Im B))
For zeF let x;=(B;L;—I)'x and xy=Kx,. Then
(Bily—1— B/K)x, + Bjry=x
80
Im (B,L;~I—~BK,)+Im B;,=F
Hence, from Theorem 2, part (i), D, =%. Also, D,< 8, so
D, cRNS,, =Ry,
Furthermore, by Lemma 1
Ry=RANS =R,NS <R NS, =R,
S0
RsD Dy =Ry,
To prove the converse let
2R g = R;NSy = AN (S @ D,)
Then zeZ and there exist yeS, ze Dy, such that 2=y +2. But
y=x—2eR+ D, =R



1142 D. Cobb

S0

2e(ZNSYD D, =R, DDy,
and

‘@slcchgs('DDk .

We thus have a three-fold decomposition of the closed-loop system. One
subsystem is essentially the open-loop slow subsystem (8) with possibly a
different input transformation but with the same controllable subspace 2,.
The second subsystem acts on D, with the induced eigenvalues ;. Part (iii)
states that this subsystem is controllable. Together the first two subsystems
comprise the closed-loop slow subsystemn. The third subsystem determines
the fast trajectory. Its structure depends heavily on the feedback gain K.

5. Elimination of impulses by fast feedback

In this section we consider the problem of eliminating the impulsive
portion of (10) by applying linear feedback. We would like to eliminate the
impulses in (10) for arbitrary initial conditions. Clearly this is achieved if
and only if L;=0. First we need a lemma.

Lemma 2

Let Y and Z be euclidean spaces with dim Y =dim Z and let N : Y—Z
and G: U->Z be linear transformations. There exists a linear transforma-
tion H : Y—U such that N+ GH is invertible if and only if Im N +Im G=Z.

Proof

If N is invertible let H=0. If N is singular the existence of an appro-
priate H is equivalent to controllability of the zero eigenvalue of N with
respect to the pair (N, ). This is equivalent to

ImN+Im G=2Z

Theorem 6
The following statements are equivalent :
(i) there exists K satisfying (12) such that L, =0,
(ii) there exists K satisfying (12) and (18) such that L, =0,
@iii) Im L;+Im B, +Ker L= F.

Proof

That (i) implies (i) is obvious. Applying the decomposition of Theorem 1
to the closed-loop system corresponding to some K gives that L, =0 if and
only if 7,=rank E where r, is the degree of det (Hs— 4 —BK). From
elementary matrix arguments it follows that the (rank E)th coefficient of

I,-IL-BR, -BR,
(24)

det (MEs— MA—MBK)=det N
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is equal to the (rank L,)th coefficient of det (L,s—I—B,K;). If a trans-
formation K exists as in (i) then »,=rank & and the (rank E)th coefficient
of (24) is non-zero. Let the linear transformation K be defined by

0 if ze8S
Kx=
Kz if el
Then K satisfies (12) and (18) and the degree 7; of

1-I, -BR,
det (M Es— A — BE) =det _ o

0 Lis—I—-B/K,
is r4-rank L, =rank F so L;=0.

To show the equivalence of (ii) and (iii) choose a basis (¢, ..., €,,;

€ty s €py s e €paia1s oo Op,) OF I s0 that L is in Jordan form with d
blocks of sizes p;.—p; Let [+ LK =[hy], py=0, 0;=h,, , .1 for

j=1,...,d, and ©=[0;]. A straightforward calculation yields that the
(rank L;)th coefficient of det (Lys—1I— B/K;) is just det ®. Hence (ii) is
equivalent to

det @#£0
Note that
Im L;=span {e;|j=p; 1+ 1, ..., p;—1; i=1, .., d}
and

Ker L;=span {e;, e, 1, ..., €p,_ 11}

Let
T =span {e,,, ..., ¢,,}
and let V be the projection of 7’ along Im L, Then
Mat (V(I + B,K,)|Ker L;)=0

But

V(I+ B,K,)|Ker L,=V|Ker L, + (VB,)(K,|Ker L)
so from Lemma 2 an appropriate K, may be found if and only if

V(Ker L;+Im Bj)=1Im (V|Ker L,)+ Im (VB;) =T
This is equivalent to

Im L;+Ker L, +1Im B;+ F

since T@®@Im L,=F. [

Theorem 6 may be interpreted as a pole-placement theorem concerned
with shifting poles at infinity into the finite portion of the complex plane.
Theorem 5, part (iii), says that the shifted poles correspond to controllable
eigenvalues and can thus be placed arbitrarily.
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Comparing the subspace condition (iii) to Theorem 2, part (ii), we see
that impulses can be eliminated under assumptions somewhat weaker than
controllability. In fact, condition (iii) is equivalent to controllability of the
quotient system of (9) modulo Ker L,. It is not surprising that controlla-
bility is related to our ability to eliminate impulsive transients.

6. Conclusions

Pole placement of the over-all descriptor system can be accomplished in
two stages. First, the given system must be decomposed as in Theorem 1.
If any impulsive behaviour is present it can be eliminated under the conditions
and according to the procedure of Theorem 6. It is not clear from the
construction in Theorem 6 whether or not assumption (23) holds for the
closed-loop system. 1f it does not then Theorem 5 cannot be applied in the
decomposition of the system. However, it seems reagonable to expect that
this is a pathological case. A topic for further research might be to see if
condition (23) is in fact generic.

The second stage involves the decomposition of the closed-loop system
after fast feedback and the calculation of the appropriate feedback matrix
to place the finite eigenvalues. As shown in Theorem 3 this can be accom-
plished using standard pole-placement procedures from state-variable theory.

Appendix
Proof of Theorem 1
Let
3
det (Is— (AE — A)'E)=s"2 [] (s—n,)™
i=1
where

3 ,
d= Y p, m,#0 fori=1,..., 8 and i#j implies n,#x;
i=1
n—d is the multiplicity of the zero eigenvalue of (A\E — 4)-1E. Define
s
Bi= @ Ker (Al — A)LE —,I)P:
=1
and
By=Ker (AE— A)"1E)»—4
Then B,®R,=X, dim R,=d, and R, and R, are (AE — A)-1E-invariant.
Let Hy=(AE—A)'E|R, and Hy=(AE — A)'E|R,. Then
)
det (Is—H,)= H (8—ny P
i=1

and H, is nilpotent. Since

(AE— Ay A= XAE—A)"E—~1, (AE—A)y'A|Ry=H,—1I
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and
(AE — A)A|Ry= \H, 1
Define the linear transformation N on X according to

H if xe Ry
No=

(AH,—I)'% if 2R,

H, and AH,—1I are invertible since H,; has no zero eigenvalues and H, is
nilpotent. Let N=N(AE—A)-!. Then R, and R, are both NE- and NA-
invariant with

NE|R,=N(\E -~ A)'E|R,=H, ' H,=1
and
NA|Ry=N(AE — Ay A|Ry=(AH,— 1) (AH,—I)=1
Also,
NE|Ry=(H,—1)"H,
which is nilpotent and
NA|R,=HYAH,—I)=X —-H,"!

Next, observe that

_det (NEs~NA)
det N
_det (Is—-NA|R,) det (NE|Rys—1)
det N

det (Es— A)

But det (NE|Rys—I)=(~-1)% so

det (Is— NA|R,)= ﬁ (s— Ay
i=1

Also,
det (Is— N A|Ry)=det (Is-- (A —II,~1)) = 5 (s — (A—1/n;))Ps
=1

2

Thus, if the »; are indixed properly, we have 8 =k, p;=n,, d=r and A—1/n,= ),
s0 n;=1/(A—A;). Hence R,=8, R,=F, H,=J,, Hy=J,, N=M and N=M.

|
Proof of Theorem 2

(i) Let M be as in Theorem 1. Then
M(Im (ME—~A)+TIm B)=Im (\ME — M A)+Im (MB)
=TIm (N — L)+ Im (ML, —I)+ Im (M B)
=(Im (M -L)+Im By F
since A,L;—1I is invertible. From state-variable theory,
Im (AJ—L)+1Im B,=8
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it and only if A; is a controllable eigenvalue. Since M is invertible the result
follows.

(i) I'rom Yip and Manke (1978) we know that
Ry=1Im B, +1m L,B;+...+Im L1 B,
so A, = I if and only if (L, B)) is a controllable pair or equivalently,

Im L+ I B~ F

But
M(Im E+Tm B)=Tm (ME)+ Im (MB)=S@®(Im L, + Im B,)
and the result follows. |
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