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A Unified Theory of Full-Order and Low-Order
Observers Based on Singular System Theory

Abstract—The standard construction of the minimal-order state ob-
server for a linear time-invariant plant is shown to be a degenerate form
of the ordinary full-order observer. The naive state estimation technique
of successively differentiating the plant output is also shown to be a
limiting case of the same full-order structure. Various results concerning
the set of all degenerate forms of the full-order observer are presented.
In particular, conditions are established under which shifting observer
eigenvalues far to the left in the complex plane implies proximity to a
successively differentiating system. In addition, it is shown that such a
scheme can never yield satisfactory estimation, Singular perturbation and
singular system theory are used throughout the analysis.

1. INTRODUCTION

The theory of state observers has long been one of the cornerstones
of modern system theory, with applications to a variety of control and
filtering problems. Given the linear time-invariant plant

r= Az, y=Cz 0))
probably the simplest structure for estimating the state x is the
full-order observer

z=(A~-LC)z+ Ly. 2)

Here we have ignored the possibility of external input terms in (2),
since we assume that their influence on x is known exactly.

In addition to (2), other observer structures have been proposed.
For example, reduced-order observers which exploit the direct trans-
mission of state information through the C' matrix, are well known.
Also, it has been suggested that successive differentiation of y leads
to a construction that yields the state variable exactly, although this
method is generally dismissed as being “sensitive to noise.” For an
elementary discussion of these ideas, see [1, Section 7-4].

In this paper our objective is to demonstrate how these concepts can
be unified through application of singular perturbation and singular
system technigues. Specifically, we show that minimal-order and
successive differentiation observers are simply degenerate forms of
the full-order observer (2) obtained by letting L diverge. It will be
seen that a number of striking results concerning the limiting forms
of (2) are made possible by our approach.

. PRELIMINARIES

To speak in precise terms about the degenerate forms of (2), we
will need some elementary concepts from singular system theory.
Consider the singular differential equation

F:=Gz+ Hy 3

where F' and G are n X n, (F, G) is regular (i.e., det(sF — Q) #
0), and H is n X p. We could associate with each (3) a point
(F, G, H) € R*®"*P) byt this would introduce redundancy in
the parameterization, since premultiplication of {3) by a nonsingular
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matrix has no effect on the dynamics of the system. Thus it is
convenient to adopt the differentiable manifold viewpoint developed
in [2], where it is shown that systems (3) can be naturally associated
with points in an n{n + p)-dimensional Grassman manifold.

Briefly, let (n,p) = {(F,G, H) € R"Cnt»)

(F, G) is regular}, and define an equivalence on %(n, p) by
identifying points (F1, G1, Hi) and (F2, G2, H2) whenever there
exists a nonsingular matrix M such that [F1 Gy H1) = M[F2 G2 H»).
It is easily shown that the resulting quotient set L(n, p) is
an open, dense submanifold of the Grassmanian G, (R*™*P),
Also, the ordinary state equations (viz. system (3) with F' = I)
imbed naturally into L{n, p) as an open, dense submanifold.
The equivalence on X(n, p) can in fact be extended to all of
R(®ntP) By [F, G, H we mean the point in G,(R*™'P)
represented by (F, G, H); thus [Fy, G1, Hi] = [F2, G2, Hs] if
and only if (F1, Gi, H1) and (F2, Ga, Hy) are equivalent. The
imbedding u(F, G, H) = [F, G, H] which takes R**"*?) into
G+ (R®™"P) is a submersion; hence, if ¢ = [F, G, H] and & — €,
there exists a sequence (Fi, Gk, Hr) — (F, G, H) such that
fk = [Fk, Gk, Hk] for all k.

It will be useful to invoke the Weierstrass Decomposition Theorem
for regular pencils of matrices. (See [3].) According to the theorem,
for each regular pencil (F, G), there exist nonsingular M and N
such that

MFN = diag(I, A;), MGN = diag(As, I) @)

where Ay is nilpotent. Let A(s) = det(sE — A) and r = deg A.
Then Ay is (n — 7) X (n — ), and we define ind A; to be the
smallest integer g such that A} =0.(f n=r, wesetind Ay =0.)
For £ = [F, G, H] € L(n, p), we may then define the index and
order of £ by ind¢ = ind Ay and ord £ = r, respectively. Note that
the these two definitions depend only on £ and not on the particular
choice of representative (F, GG, H). The eigenvalues of £ are taken
to be the eigenvalues of A, or, equivalently, the roots of A. (Note
that A is uniquely defined up to a scaling constant for a given £.)

In addition to the parametric representation of (3), we are also
interested in its solutions. To this end, we need some basic concepts
from the theory of distributions. (See e.g., [4].) Let K be the space of
C* functions ¢: R — R with bounded support, and let K. denote
the distributions (continuous linear functionals on K) with support
in [0, o). Each locally L' function f is considered a distribution,
since it determines a functional ¢ — f[f. The unit impulse §
is defined to be the evaluation functional (6, p) = ¢(0). Every
distribution has a derivative defined by (f, @) = —(f, ¢); thus,
(89, 0) = (=1)®(0).

A sequence of distributions f is said to converge weak™ to f if
{fr, ) — ([, @) for every ¢ € K. Besides weak* convergence, we
will sometimes refer to uniform convergence fr — f on an interval
T C R. This simply means that there exist locally L, functions g, g
defined on T such that gr — ¢ uniformly, {fx, ¢) = {gk, ), and
{f, ¢} = (g, ) for all ¢ with support in T

Let zo be the initial condition in (3). The response of singular
systems to arbitrary initial conditions is a fairly subtle matter and is
discussed at length in [5] and [6, Chapter 22]. Letting
[H, BHi1" =MH, [z 21" =N"'2, [, zs] =N "'z

5)

we have

q—1
zs = exp{As)2os, 2f = _Z‘S(Z—l)AleOI ©)
—
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where exp (X)(t) = !X 6(t), where 6 is the unit step function. Based
on (6), we say that the system £ is stable, if all its eigenvalues ) satisfy
ReA < 0 and ind€ < 1. Finally, we define the natural response
matrix corresponding to (3) as
q—1
® = N diag (exp (A), -—Z 5“"”/1}) N7 @)
=0
It is easily verified that ® is the unique distribution with support in
[0, co) satisfying F'® = G® + 6F and z = ®zp. (See [6, Chapter
22].) & may be viewed as an ordinary function on (0, o0) or, if
ind§ < 1, on [0, o0). Also, the mapping (F, G) — & is invariant
under multiplication of (3) by M, so the map £ — ® from L(n, p)
into (K% )"*™ is well defined.

HI. THE MANIFOLD OF OBSERVERS

The full-order observers (2) for a given plant (1) imbed naturally
into L(n, p) via the map L — [I, A — LC, L]. We denote the
image of R"*? under this map by O.. Let O denote the closure of
O, in L(n, p), and set O, = O — O,. O is the set of observers
corresponding to (1), points in O, are the regular observers, and
elements of O, are the singular observers.

Another way of defining the sets O, O, and O, is through
use of the submersion u. Let Q. = {(M, M(A — LC), ML) |
detM # 0, L € R"*P}, Q be the closure of 2, in Z(n, p), and
Qs = Q — Q,. It is routine to verify that £(2) = O, u(2) = O,
and u(Qs) = O,.

A great deal more can be said about the structure of the set of
observers O.

Theorem 3.1:

DO={X,XA-YC, Y] € L(n,p) | X € R Y €

RnXp}

2) O is a regular submanifold of £(n, p) with dimension np.

3) O, is a (relatively) open, dense submanifold of O.

4) If [X, XA-YC, Y] € O, then X is a singular matrix.

Proof:

1) Let X and Y be given. Then there exists a nonsingular
sequence My, — X; setting L = M 'Y yields MyLy — Y
and My(A — LyC) — XA — LC. Thus the closure of Q.
contains & = {(X, XA -YC,Y) € Z(n,p) | X €
R"*", Y € R"*?}. But {2 is itself closed, so the desired result
follows from p(?) = O.

2) It is routine to verify that the map [X, Y] — [X, XA —
Y C, Y] from G, (R"*P) into G (R*"**?) has full rank; hence,
G,.(R"*P) may be viewed as a submanifold with dimension
np. The proof of regularity follows along the same lines as the
proof of Theorem 2, part (2) in [2].

3) Density of O, is obvious. Since €2, is open in Q and g is
a submersion (and therefore an open map), (£2.) is open in
1(2).

4) Let £ = [X, XA - YC, Y] If X is nonsingular, £ =
[I, A= X7'YC, X~'Y]. Setting L = X ™'Y implies that
£e€0s. O

According to Theorem 3.1, part 4), the set O, of singular observers
corresponds to all degenerate forms of full-order observers (2). This
reduction in order can only occur as a result of letting L diverge in
such a way that some or all eigenvalues of (2) tend to infinity.

Another important subset of O is described as follows. Let V =
{(X,Y) € R*"*P) | XA — YC = I}. Clearly, V is nonempty iff
rank [AT CT]7 = n (or, equivalently, zero is not an unobservable
mode of (A, C)). In fact, Theorem 3.1, part 1) implies that & =
[X, I, Y] € Oiff (X, Y) € V. Thus the map (X, Y) — [X, I, V]
puts V (diffeomorphically) into one-to-one correspondence with the
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set of observers [F, G, H| with G nonsingular. Consequently, ¥V may
be viewed both as a submanifold of O or an affine subset of R™("*+7),
From (4), V is precisely the set of observers with no eigenvalue at the
origin and therefore includes all stable and all zeroth-order observers.
The stable and zeroth-order observers are the subject of the next three
sections.

IV. MINIMAL ORDER STABLE OBSERVERS

We begin this section by noting that there is no loss of generality in
assuming rank C' = p, since otherwise we could redefine the output
as w = T'y, where T'C has independent rows. With this in mind, we
are in a position to prove a variety of results concerning the stable
points in O,. v

Lemma 4.1: 1If (A, C) has an unobservable eigenvalue A, then A
is an eigenvalue of every point in O.

Proof: Since X is an unobservable eigenvalue of (4, C), X is
also an eigenvalue of A~ LC for every matrix L and, hence, an eigen-
value of every point in O,. Let £ = [F, G, H| € O,, and choose
£k € O, such that §-— &. Then there exists (Fi, Gk, Hx) —
(F, G, H) such that & = [Fi, Gk, Hi]. Since X is a root of
Ak(s) = det(sF, — Ay) for every k and since the roots of a
polynomial of degree n are continuous relative to its coefficients,
A is also a root of A. Hence X is an eigenvalue of £. |

Theorem 4.2:

1) If O, contains a stable point, then (A4, C) is detectable.

2) If (A, C) is detectable, then O, contains a stable point £ with
ord{ = n — p.

Proof:

1) Suppose (A, C) is not detectable. Then it has an unobservable
eigenvalue A with Re A > 0. From Lemma 4.1, every £ € O
has the same eigenvalue A, so every £ is unstable.

2) Choose a nonsingular matrix N such that CN = [I 0}, and let

P Q] _ et
[R S} = N AN. ®
Since (A4, C) is detectable
AM-P -Q
rank | —R A -S| =n
I 0

for every A with Re A > 0. Hence, rank (A — ST Q7T =
n — p; i.e., (S, Q) is detectable. Choose A such that S — AQ
is stable, and let

‘= [N [—(S A0 (s- 2@)—1]1‘["1’-

L N[(s - AQ);I(R- AP)”' ©)

Clearly, £ € L(n, p), and £ is stable, since it has unit index
and (S — AQ) ™" is stable. That £ € O follows from

N [—(S—zonr‘A (S—KQW]N_IA
—N[(S_AQ)“_‘{(R_AP)]C=I. O

Theorem 4.3

1) If £ € O, is stable, then ord€ > n — p.
2) € € O, is stable with ord§ = n — p iff (S, Q) is detectable
and (9) holds.
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Proof:

1) If £ is stable, then £ = [X, I, Y] with (X, Y) € V. Since
XA-YC =1, rank[X -~ Y] = n; hence, rank X > n — p.
Appealing to (4), stability implies A; = 0, so ord £ = rank X
and the result follows.

2) Premultiplication of (9) by M =
and postmultiplication of the first two entriesby N = N7 []
yields a decomposition (4), (5) & =

I 0 s_AQI I}
[(5~/\Q)_AI+R-AP]) ([ ol 1)

—(S=AQA $-AQTAr—1
[ ; ) AR N

[CI1] ¢]
. Sufficiency follows immediately.
To prove necessity, we again note that £ = [X, I, Y] with

XA-YC = LlLet [0 32] = N7'XN and [] =

N7y This yields [§2 %2] (7 @]~ (B or=[] 9;
hence,
[Xs XJQ7 §T)f =1 (10)
so rank [X3 X4] = n — p. As in part 1), rank X = ord¢ =
n — p. Hence, there exists a matrix M such that [X; X,] =
M[Xs Xa]. But M = M[Xs X4][2] = [X1 X2][¢] =0,
X=N[2 2 ]N7" anddetXy # 0. Let A = ~X]*Xa.
Then, from (10), X Ve 9 AQ and, since £ is stable,
X4 is stable. Finally, we note that (10) gives Y1 = —I and
Yo = X3P+ XyR = X4(R— AP). [
We have thus established that the minimal order stable observers are
parameterized by (9), where A ranges over all matrices that make
S — AQ stable. These systems are closely related to the conventional
definition of minimal order dynamic observers found in elementary
references such as [1, Section 7.4]. The exact connection can be made
as follows: Every point £ € O, characterized by (9) determines a
differential equation

0 0 .
N[—(s —AQ)'A (S— AQ)‘I]N z

-I
=z N[(S—AQ)“(R— AP)]y'
Let [3;] = [7 lg]N“lz. Solving for z, direct substitution,

and premultiplying by M = ”(S"IAQ)L S’OAQ N~ yields

[0 81[5s] = (55 S1[e] + [ " |y, which can
be rewritten w1 = (S — AQ)w:1 + ((§ — AQ)A + R — AP)y,
z = N[0 I]Tw'—*- NI AT)"y. The last two equations are easily
recognized as the conventional form for the minimal order dynamic
observer. (See [1, p. 362].) Thus all stable minimal order observers

are merely limiting forms of the full-order observer (2).

V. ZEROTH ORDER OBSERVERS

As indicated in (4), zeroth-order systems in £(n, p) are those of
the form ¢ = [X, I, Y], where X is nilpotent. If such a system is an
observer, it must lie in O;; indeed, a zeroth-order observer is simply
a limiting form of the full-order structure (2), where we let L diverge
in such a way that all eigenvalues of (2) tend to infinity. Zeroth-order
observers must belong to V. Denote the set of all such points by Z.

If (A, C) is observable, a great deal of insight can be gained by
exploiting a certain affine parameterization of V. The parameteriza-
tion is based on the Brunovsky Canonical Form of (A, C). (See [7,
Section 7.1.3] for details.)

Let T, L, and G be matrices with T and G nonsingular such that
A =T YA - LGCO)T = diag(Ay,-++,4,) and T = GCT =
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diag (Cy,-+,Cp), where
0
A= |1 , Ci=[0 0 1]
1 0
Assume A; is n; X n;. If
V=" Y=[yl an
then it follows by direct calculation that XA — YC' = I implies
X = [Xij], where
Lo .
Y1 . yi]_ 0 0
: o1 i :
. vi 0 0
y:l.,,l 0 Y 7
(12)

The map Y — X determined by (11) and (12) is affine and one-to-
one. An affine parameterization Y — (X, V) of V is thus generated
by reversing the Brunovsky transformation X = TXT™', V =
T(Y +XT~'L)G. We can now prove several results concerning the
zeroth-order observers Z.
Theorem 5.1:
1) Z is nonempty iff (A, C) is observable.
2) If (A, C) is observable and p = 1, 2 is a singleton.
3) If (A, C) is observable and p > 1, Z is uncountable and
unbounded (as a subset of R™" 7)),
Proof:
1) If (A, C) is not observable, it has an unobservable eigenvalue
A. From Lemma 4.1, X is an eigenvalue of every point in O.
But a zeroth-order point must have constant A. On the other
hand, if (A, C) is observable, the parameterization (11), (12)
yields nilpotent X for Y = 0.
2) For p = 1, (11), (12) reduce to

o1

x={ " | 7= (13)
Yn 0
If X is nilpotent, ¥ = 0.
3) For p > 1, nilpotent X may be achieved in a variety of ways.
For example
0 yo Yip
=1
Yp—1,p
Q --- 0

yields nilpotent X regardless of the values y;; € R™:. The

desired result follows from the Brunovsky transformation. ([l
Next we investigate the dynamic properties of zeroth-order points.
Theorem 5.2: Every £ € Z satisfies ind€ > (n/p).

Proof: As noted at the end of Section III, ¢ = [X, I, Y], where
XA -=YC(C =1I. Thus rank X > n — p; also ord§ = 0 implies that
X is nilpotent. The Jordan form of X must therefore consist of no
more than p blocks. Clearly, ind X is equal to the dimension of the
largest block, which must be at least (n/p). 0

Theorem 5.3: If p = 1, & € O, and all eigenvalues of &
diverge, then £, — £, where £ is the unique zeroth-order point in O,.
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Proof: Since the eigenvalues of & diverge, {x € V and (4, C)
must be observable. We may therefore apply the parameterization
(11), (12) yielding Xy, Y & of the form (13). The eigenvalues of X ;
must tend to zero, so Y, — 0 and X, converges to a nilpotent.
Applying the Brunovsky transformation, £, — ¢, where ord¢ = 0.

O

Unfortunately, Theorem 5.3 does not generalize to cases where
p > 1. From Theorem 5.1, part 3}, we may construct a sequence
(Xk,Yr) € V where X is nonsingular and has eigenvalues
converging to zero, but is unbounded. Hence &, = [ Xy, I, Yi] € O,
and has diverging eigenvalues, but does not converge in O.

We are now in a position to compare the zeroth-order observers
described within our framework to the “successive differentiation”
(see, e.g., [1, Problem 5.17].) Through repeated differentiation of (1)
and substitution for & from the state equation, for ¢ > 0 we obtain

') 37 y " IT]" = Va(t) (14)

where V' is the observability matrix of (1). Thus the left side of (14) is
guaranteed to lie in the image space of V' for all £ > 0. Observability
of (1) implies that V has full rank, so we may premultiply (14) by any
left inverse W of V. to obtain z(¢) explicitly. Hence, the proposed
“observer” is

2ty =Wy (1) 37 (2) (15)

This scheme appears ideal in that an exact copy of «(t) is ap-
parently obtained; however, differentiation is known to be “sensitive
to noise,” so the scheme is not considered viable by most system
engineers and theorists. Interpreting (15) within our framework, the
essential problem is that (14) is incomplete; indeed, the derivatives
of ¥ in (14) are not well defined about the origin, unless some
information about y is given for ¢t < 0. For example, one might
imagine a small disturbance added to the plant output y just prior
to ¢+ = 0, vanishing discontinuously at ¢ = 0, and thus producing
impulses in g, ¥, etc. Such behavior is not accounted for by (14).
In general, if output disturbances (or even plant input disturbances)
are present, (14) does not give a complete picture of the behavior
of the state z.

Our singular system framework does, however, enable us to
achieve an understanding of transient phenomena about ¢t = 0 in
the successive differentiation approach. We first note that a zeroth-
order observer £ = [X, I, Y] corresponds to a differential equation
X% = z+Yy, where X is nilpotent. Equation (6) indicates that the
state estimate z is given by

n—1 n—1
2= —ZXiYy(i) - Z §0-D xi g,
+=0 i==1

y T )]

(16)

Note that {16) does indeed involve derivatives of y. The initial
condition may be the result of disturbances prior to ¢ = 0, so the
impulsive terms in {(16) may be viewed as the “noisy” part of z. For
t > 0 we have

() =Uly" (1), 37t y I (17)

where U = —[Y XY ..+ X"~'Y)]. Comparing (15) and (17), it
remains to show that U is a left inverse of V.
Lemma 5.4: If X is nilpotent and XA —-YC = I, then UV = 1.
Proof:

n—~1 n~1
UV =-3XYCA =) X' (I-XA)A’
=0 :=0
n—1 n
= ZX"A" - ZX"A" =J—X"A" =1I. a
=20 =1
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We have thus established that every zeroth-order point in O is an
implementation of the successive differentiation technique. Indeed,
since the left side of (14) is guaranteed to lie in the image space of
V, the exact choice of left inverse W in (15) has no effect on the state
estimate for ¢ > 0. Hence, setting W = U yields the same estimate
for ¢t > 0, independent of X and Y. In fact, the only change in (16)
caused by varying (X, Y) over Z is the structure of the impulsive
part of the response. Unfortunately, in view of Theorem 5.2, no choice
of X and Y can remove the impulses altogether, except when p = n.

V1. REGULARIZATION AND ERROR CONVERGENCE
One advantage of our theory is that the error vector e = z — z is
governed by a single equation, regardless of which of the observer
structures studied above is chosen. To derive this equation, recall
Theorem 3.1, part 1), and note that X& = XAz, Xz = (X4 -
YC)z + YCz. Hence, Xé¢ = (XA — YC)e. In particular, if
(X,Y) €V, this equation reduces further to

Xé=e. (18)

Our construction of O in Section III guarantees that O, is dense
in O. This means that, for any £ € O, a sequence Ly, can be found
such that [I, A — LyC, L] — &. This statement provides very little
information, however, about the behavior of the corresponding error
functions e, as k becomes large. The results of this section address
precisely this issue.

Let Fj be the natural response matrix of the kth error system;
i.e.; let By = exp(A — LiC). Also let E be the natural response
matrix of the limiting error system determined by £ = [X, I, Y].
This means that F is the unique distribution with support in [0, co)
such that XE = E + 6X. (See [6, Chapter 22}.)

Lemma 6.1: The unique solution of XE = E + 6X also satisfies
EX = E + 6X.

Proof: There exists a nonsingular N such that NV “IXN =
diag (A7, Af) for some nonsingular A, and nilpotent Aj.
(This is equivalent to the Weierstrass decomposition (4) for
G = 1) Hence the solution of XE = F + 46X is E =
N (exp(As), —2;?;;5“—014})1\7—1. The result then follows by
direct substitution. O

Theorem 6.2: Let £ € O, be stable with ord§ = n — p as in (9),
andlet Ly = N{(P+kD)T(R+EA)T)T and & = [I, A~LiC, Li].
Then &, — &, the sequence Ej is uniformly bounded, and £y — E
uniformly on [e, co) for every € > 0.

Proof: Let T = S — AQ, and recall the I' is stable. Then

det(A — LiC) = det [:,1:/1\ g] = (~k)?detT" # 0. Therefore, we

may write & = [(4 — LiC) ™!, I, (A — LpC)~ ' Li]. Next observe
that
N™YA-L,C)™'N
_[-k Q7 _ [-3UI+QT7'A) QI
—kA S T A r-t

_ 10 0
-T~'a T

N™YA -~ L.CY 'L,
_ {4«1 Q]_I[P+kl}

and

—~kA S R+ EA
ot IS N ) B P TV

Thus & — &.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 12, DECEMBER 1994

We have Ej, = Nexp([:,f/{ g])N“l. Let

_ 10 I Tl -7 10 T sT
‘I"“‘[I O]N B N [I 0]“"""([-A:AT

QT
%))
By substitution it follows that ¥y is the solution of

I o0 1 _[87 @F I 0

[o (1/k)1}‘1”€ = [—AT —1 | +6[o (1/k)1}' (19
Standard singular perturbation theory shows that ¥, is uniformly
bounded and ¥; — ¥ uniformly on each [e, o), where ¥ is the

solution of

o oy =[S Gwedfs O]
(See, e.g., [9].) From (19), E; is uniformly bounded, and
Ey — E on every [, c0), where E = N[9 []¢7[9 IIn—1.
It remains to show that E = E. Note that [_SATT ?H_I =
[_ IT—I’:P“T _ ILCTTFQ_ZQT]. Premultiplication of (20) by the
right side of the last equation yields [_ /&TIT_T g]\il = U 4

6 [_ {T_TT*T g] Thus the expression for £ and Lemma 6.1 tmply

(20)

] 0 —-155 5 0 0 -1
N ICHRICA P IE JURCR

o (5 8-
- 5[_5}: g])T[o 1IN =0, o

A weaker result than Theorem 6.2 can be proven with regard
to zeroth-order observers. Since (A, C) is observable, (ATC7) is
controllable, so from [1, pp. 342-343] there exist K; € RP*"
and v € RP such that (A7 + CTK;, CTv) is controllable with
AT 4+ CT K, nilpotent. Thus there exists a nonsingular N € R**"
such that

0 1
N"YAT + CTK )N = o
.. 1
L 0
ro
N Ty = |!
0
11
Let Bix = (?)k“”i,kzk = {Bok -+ Pr-r,kl Lk = —(K1 +

vkar N~
Theorem 6.3: Let & = [I, A— LyC, Li). Then & — [X, I, Y]
for some X, Y with X nilpotent and E\ — FE weak™ and uniformly
on [e, co) for every ¢ > 0.
Proof: Define

0 1
X=nNT NT,
1
0
0
Y = ~XK] -N"T| |7,
0
1

2501
Then
(4-LyC)™?
= N"T(NYAT + CTE )N + (N CTv) Ko ) I NT
- Q 1 -7
=nN-T NT
0 1
-ﬂok b /671—1,10
- _ Bix 1
Bok
=N T : 0 NT o X @y
_Ba-1k 1
Box
- 0
- Box
and (A~LiC) 'Ly = —(A—Li C) ' KT -N"T[0---0 1]77 —

Y. Hence, & — [X, I, Y]

It follows from (21) that & has Ax(s) = (s + k)"; hence,
from [5, Theorem 3], Ex — E weak™, Fort > 0, E(t) = 0 and
Ey = exp (A~ LiC). By direct calculation it follows that each entry
of Ey is of the form eji(t) = S0 0 3770 vijk’t'e ™™, where
the 7;; are independent of k. From elementary analysis, e;;x — 0
uniformly on [e, co) for every e > 0 and every ¢, j. [

In spite of the fact that Theorems 6.2 and 6.3 make similar
statements about error convergence for certain approximations to
both minimal-order stable and zeroth-order observers, there is a
critical difference between the two results: In Theorem 6.2 uniform
boundedness of E). is guaranteed, while in Theorem 6.3 uniform
boundedness is replaced by weak® convergence. This change con-
stitutes a drastic weakening in the kind of convergence that one
can expect when approximating the two types of observers. Indeed,
upon closer examination, it can be seen that the construction used
in Theorem 6.3 yields an error sequence Ej which exhibits large
peaking behavior in the “boundary layer” [0, €). Such peaking occurs
typically when approximating a system exhibiting impulsive behavior
as in (6).

Another difference between Theorems 6.2 and 6.3 is that The-
orem 6.2 provides an explicit construction for approximating any
minimal-order stable observer, while Theorem 6.3 merely gives an
approximating sequence for a single zeroth-order observer. Given
an arbitrary zeroth-order observer, finding a fuil-order regularization
which is well behaved in both the parametric and error sense is an
open problem.

Taking the issue of boundary layer peaking one step further, our
next result shows that such behavior of the estimation error proves
disastrous in a large class of optimal estimation problems. Note that,
for any stable £ € O, (6) implies that E € L,™" for 1 < p < o0.

Theorem 6.4: Letp < n, 1 < p < o0, and & € O be stable
for all k. If, for every 0 < oo, there exists a kg < oo such that
k > ko implies that each eigenvalue A, of & satisfies [Aix| > o,
then [|Exll, — oo as k — oo.

Proof: In the first part of the proof, we make use of two
topologies on L. Let 71 be the weak” topology on K’ relativized
to L, C K'. T uses K as the space of test functions. Let 72 be
the weak™ topology on L,,, viewed as the dual space of L,, where p
and v are conjugate exponents. Thus 72 uses L, as the test function
space. Since XK' C L,, T, C T».

Suppose || Ex||, has a bounded subsequence {|Ey,{|.. The Ba-
nach-Alaoglu Theorem [10, Theorem 3.5.16] implies that {Ex_ }
lies in a 7, compact subset of Lj;*"™. Thus there exists a Tp
convergent subsequence Ej_ 5" The same subsequence must also
converge relative to 7;.

Let & = [Xi, I, Yi]. From [2, pp. 341-344], 7, convergerice
of Ekaﬁ guarantees that X ko cOnverges to some matrix X. The
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eigenvalues of X are simply the eigenvalues of &, along with some
additional zeros; consequently, X is nilpotent, and Ek&ﬁ - F =

—¥ 64V X Since p < n, Theorem 5.2 applied to the sequence
of error systems (18) implies X # 0, so E has an entry e;; € L,.
Consider the corresponding entry e;;; in Ei. We will show that
ﬂe.,-j;g% flu — oo, contradicting boundedness of ||Ej_||. Impose
the L, norm on K; this generates the dual space K™ (distinct
from K'). In fact, K is dense in L,, so K* = L,. Since e;; ¢
L,, e;; determines an unbounded linear functional on K (i.e.,

sup pex |{€i;, p)] = o0). Let p > 0 be given. There exists a

P € K srflch that J|4ll, = 1 and {{e:;, ¥)| > p. It follows from
(€ijkag> ¥) — (eij, ) that for large 5 we have leikaglln =
P ek [eijhags P 2 (eisha,s ¥ > p. Since p is arvirary,
flesjkay lla — oo -0

The condition p < n cannot be weakened in Theorem 6.4. Indeed,
when p = n, Q, and S in (8) are zero dimensional, so (9) reduces
to £ = [0, I, ~C™']. Theorem 6.2 shows that { can then be
approximated by full-order observers in such a way that || Ex{l, — 0
for 1 < pu < oo (but not ¢ = oo). But p = n is the trivial case where
all plant states are directly measurable at the output.

Theorem 6.4 is in direct conflict with what is arguably a com-
mon piece of folklore related to observer design. According to
one school of thought, the performance of full-order observers or
minimal order observers can always be improved by choosing L
or A to move the observer eigenvalues further to the left in the
complex plane. This has the effect of making the decay rate in
the error system (18) larger, thus making the error “smaller.” The
same idea is reflected in Theorems 6.2 and 6.3 under the guise
of uniform convergence on {e, co). However, Theorem 6.4 shows
that the act of moving all eigenvalues arbitrarily far to the left
necessarily carries with it the undesirable side effect of boundary
layer peaking (or worse) and consequent divergence of the L,
norm.

Returning to our discussion of noise, we conclude that bound-
ary layer peaking, impulsive behavior, infinite L, cost, etc. are
all manifestations of the effect of disturbances on the successive
differentiation scheme or any approximation to it. Proximity to a
zeroth-order observer always carries with it the undesirable behavior
present in the zeroth-order observer itself.
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