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The Minimal Dimension of Stable Faces Required to
Guarantee Stability of a Matrix Polytope:
D-Stability

J. DANIEL COBB

Abstract— We consider the problem of determining whether a polytope
@ of n xn matrices is D-stable—i.e., whether each point in & has all
its eigenvalues in a given nonempty, open, convex, conjugate-symmetric
subset D of the complex plane. Our approach is to check D-stability
of certain faces of ®. In particular, for each D and n we determine
the smallest integer m such that D-stability of every n-dimensional face
guarantees D -stability of ®.

I. INTRODUCTION

Let D C © be nonempty, open, convex, and conjugate-symmetric
(symmetric about the real axis), and define an # x n real matrix M
to be D-stable if each eigenvalue N\ of M satisfies N\ € D; otherwise,
M is D-unstable. We consider the problem of determining whether cer-
tain subsets of ®" ™" consist entirely of D-stable matrices. To facilitate
discussion, we begin with some definitions.

A (convex) polytope ® in a vector space V is the convex hull conv (£2)
of any nonempty finite subset {2 C V. The dimension of ® is the di-
mension of the affine hull aff (®) of &. The relative boundary of ® is
the boundary of ® as a subset of the topological space aff (®). A face of
@ is any set of the form IIN @, where 11 is a supporting hyperplane of
®. Finally, a k-dimensional half-plane in V is any nonempty set of the
form 3¢ = R NS, where R is a closed half-space, S is a k-dimensional
affine subspace, and S ¢ R. (Note that this implies that aff (3C) is simply

<
oL

Manuscript received January 13, 1989. This work was supported in part by NSF under
Grant ECS-8612948 and in part by AFOSR under Grant 88-0087.

The author is with the Department of Electrical and Computer Engineering, University
of Wisconsin-Madison, Madison, W1 53706-1651,

IEEE Log Number 8933384.

0018-9286/90/0400-0469$01.00 © 1990 IEEE



470

In the robust control literature, considerable interest has been gener-
ated by the problem of determining whether a family of linear systems
can be shown to consist entirely of D-stable systems by checking D-
stability of certain representative members of that family. In many cases,
such problems can be reduced to that of determining whether a polytope
or other subset of R" or R" <" consists entirely of D-stable points [1],
[2]. (D-stability of a vector x € R" means simply that the polynomial
$" +X,87 7 4+ +x has all its roots in D, where x; is the ith entry of
x.) We are primarily interested in the technique of checking D-stability
of lower dimensional faces of a polytope in order to guarantee D-stability
of the entire set.

Most *“‘facial” results pertain to continuous-time (CT) stability—i.e.,
where D is the open left half complex plane. The seminal resuit [3] for
polynomial polytopes motivates the approach. In [3] it is shown that a
polynomial polytope of a particular simple structure (an ‘“‘interval poly-
nomial™) is CT stable whenever four specially constructed vertices are
CT stable. A more recent result {1] demonstrates that, for an arbitrary

i Tntant a8 ouasantas O
polynomial polytope, checking all edges is sufficient to guarantcc CT

stability. With respect to polytopes in ®'*", it has been shown [4] that
1) an arbitrary polytope is CT stable if all (2n — 4)-dimensional faces are
CT stable and 2) there exist CT unstable polytopes such that all (27— 5)-
dimensional faces are CT stable; hence, the value 2n — 4 is minimal. In
this note we extend the results of [4] to D-stability where D may be any
nonempty, open, convex, conjugate-symmetric subset of .

We note that for the cases # = 0 and n = 1, our problem has a trivial
solution: D-stability of vertices guarantees D-stability of the polytope.
To handle n > 2, we need to partition the family of stability sets D
according to the following two assumptions.

Assumption A: D is of the form D = {s € Gla < Res < b}, where

-~ <a<b <o

Assumption B: D is a nonempty, open, convex, conjugate-symmetric
set not satisfying Assumption A.

In addition, we define

1, n=2
my(n) :{
2n—-4, n>2

We intend to show that m, and mp are the values of m that we seek for
cases A and B.

and mg(n) =2n -2

II. SuFFICIENCY OF M4 AND Mig

Throughout our analysis, we wﬂl malge extensive use of the fact that
any affine, one-to—one map I ®' — R" determines an affine isomor-
phism between R and f ([R ). Among other things, this implies that, for
any polytope ® C R , f(®) is also a polytope of the same dimension as
@®; furthermore, f sets up a one-to-one correspondence between the g-
dimensional faces of @ and the g-dimensional faces of f(®). In addition,
Jf maps each k-dimensional half-plane in @ into another k-dimensional
haif-plane (e.g., see [5]). Finally, we note that every polytope is compact
and that any set of the form {x € R"|||x|lo0 < v}, where v >0, is a
polytope whose g-dimensional faces are generated by fixing k& — ¢ entries
of x at either £ and letting the remaining ¢ entries vary independently

over {—v, v}

With these observations in mind, we prove a result Cuaracterizing ihe
affine structure of the set of D-unstable points in &

Lemma 2.1: If D satisfies Assumptlon A (respectlvely, Assumptxon
B), then for each D-unstable M € R ™", there exists an (P — my)-
dimensional (respectively, (1% —mg )- dlmensmnal) half-plane 3¢ ¢ &' o
such that a) M € JC and b) N € JC implies N is D-unstable.

Proof: Suppose Assumption A holds. If ¢ = ~00, b = oo, the
statement is vacuously true; otherwise, we need to consider two cases.

Case I—M has a real eigenvalue \ggD: Let T = [v W], where
v is an eigenvector corresponding to 2\0 and W is chosen to make
7T nonsingular. Clearly, the map f:®" "' — ®*" determined by
founz=T|)”
I = (—co, Al and let 3 be the (n2 — n + 1)-dimensional half-plane

={fO0 ¥, ZDNel, yeR T, Ze® T I g = ~co,
then Ao > b so we set I = [Ny, 00) and construct JC in the same way.

In either case, M € 3¢ and every matrix in JC is-D-unstable. Since

7! is affine and one-to-one. If Ny < a, let
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n? —n+1 > n* — my, it remains to select any (n*> — m, )-dimensional
half-plane JC satisfying M € 3¢ ¢ XC.

Case I—M has a real eigenvalue \ygD. Again, let T = [v W],
where v is an eigenvector corresponding to X,. Since D is con-’
vex, either (—oo, N]ND = ¢ or [Ng, c0)ND = ¢. In the for-
mer case, let JC be the (#* — n + 1)-dimensional half-plane JC =

A ) _ X —
{T ; TN <ho, y €e® 7T, ZeR™™7 L. For the lat-

0
ter case, alter the definition of 3C by substituting “N> N for
“N < No.” In either case, M € JC and every matrix in JC is D-unstable.
Since n* —n + 1 >n*> — mp, it remains to select any (n* — mp)-
dimensional half-plane 3C satisfying M € 3C ¢ .

Now suppose Assumption B holds. We again consider two cases.

Case I—M has a real eigenvalue NogD. Again, let T = [» W],
where v is an eigenvector corresponding to Ag. Since D is con-~
vex, either (—oo, NgJND = ¢ or [N, 00)ND = ¢. In the for-
mer case, let JC be the (2 — n + 1)-dimensional half-plane & =

I's T~ bl

{T lg ; TN <Ny R, Z R

ter case, alter the definition of JC by substituting “A> N for
“A < No.” In either case, M € JC and every matrix in JC is D-unstable.
Since n? — n + 1> n? — my, it remains to select any (2 — my)-
dimensional half-plane 3C satisfying M € 3C ¢ JC.

Case II—M has a complex eigenvalue pair oy T ifo¢D. Let T =
[u v W], where u +iv is an eigenvector corresponding to ap + i .
Since D is convex, there exists a half-space I C @ such that o +ifp € II
and IIND = ¢. Let I be the (n? — 2n + 2)-dimensional half-plane

~!Xr=1 L For the lat-

a B x
’X={T| B a y|T at+tiBEI; x,y€&€RXF
0 0 Z
7z c [Rn«ZXn—Z
Clearly, JC contains only D-unstable points, and M € JC. ]

Next we prove an easy result concerning the intersection of affine sets.
Lemmaq 2.2: Let V be a p-dimensional Euclidean space, X C V a
k-dimensional half-plane, and I" 2 g-dimensional affine subspace with
k+q > p. Consider any vector xo € JC N I. There exists a (k +¢q — p)-
dimensional half-plane 3 such that x, € 3& C 3¢ NI
Proof: By definition, 3¢ = RN S, where R is a closed half-space
and § is a k-dimensional affine subspace satisfying S ¢ R. There exists
an affine subspace § C SNT with dimS = k + ¢ — p and x, €8.
If §CR,let & cRnS be any (k + g — p)-dimensional half-space
containing xo. Then & CRNSNT = NI, If § ZR, let I =
RNS. Thenxy € I, sincexo € I NT C R. Also, dim3C =k+q—-p,
since JC is nonempty. a

We are now in a position to prove our first main result.

Theorem 2.3: Under Assumption A (respectively, Assumption B),
D-stability of every matrix in every m, -dimensional (respectively, myg -
dimensional) face of @ guarantees D-stability of every matrix in @.

Proof: Suppose Assumption A holds. Our arguments here are sim-
ilar to those used in [2, Lemma 1]. If ®, is a D-unstable polytope of
dimension'k > my,, there exists a D-unstable matrix M; € ®;. From
Lemma 2.1, there is an (#* — m, )-dimensional half-plane 3C,, con-
sisting entirely of D-unstable points and containing M, . Since JC; is
unbounded, there exists an M, € JC, lying on the boundary of &, and,
hence, in one of its (k — 1)-dimensional faces ®; ., . From Lemma 2.2,
the intersection 3C; Naff(®,_,) contains a (kK — my — 1)-dimensional
half-plane 3C, such that M, € 3C,. Proceeding inductively, we find that
there exists an m,4 -dimensional face @,, and a point M, _,, € @, such
that My _,, is D-unstable.

Under Assumption B, the same proof holds if we replace m, by mg .
|

III. MINIMALITY OF M4 AND Mg

Our next task is to show that m, and mp are the smallest integers
such that D-stability of all m, -dimensional or mjp -dimensional faces of
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@ guarantees D-stability of ® under Assumptions A and B, respectively.
In order to prove this, we need a lemma which may be interpreted as a
multivariable extension of L’Hospital’s rule. For any & x k matrices Q
and R, we use the notation Q >0 and R < 0 to signify that Q is positive
definite symmetric and R is negatlve definite symmetric, respectively.
Lemma 3.1: Let 0 € U c R* with U open, and let e, €;: U — ®°

be C? functions. In addition, suppose e; (0) = ¢;(0) =0,
6@1 _ 622 _ 32€| _ 6222 <0
Ox | Ox ’ ox? ’ ox? ’
x=0 x=0 x=0

For every 6 > 0, there exists an ¢ > 0 such that 0 # || x|| < e implies
e x) < — glel(x)l

Proof: From [6, p. 340], for every Q > 0, there exists an ¢ >0
such that ||x|| < e implies

e; 1 _, 0%,
e;i(x) —e;(0) - o » - EX W » 1 5
xTQx <2\1%3% )"
, e .
Setting Q = — ﬁ yields
x=0
ey (x) + leQx
) Z
Iel(x)f . 2 < 1
x QX ’ XTQX (1)
and, from (1), e;(x) < (5——) xTQx <0 for x #0. Hence, for
x #0,
e} 2163)
|e2(x) |

(ez(x) + %xTQx) — 1xTQx

lev(x)| 1<_.5 )
T Ox 2\1+3
lex <1 1 ) =0
e, (x) + =xTOx A
) +3x0 13 2(1+5>
2

xTOx

Thus, e;(x) < — tlei(x)]. 0

Now we can prove our second main result.

Theorem 3.2: Suppose D satisfies Assumption A (respectively, As-
sumption B)..For each n, there exxsts an my -dimensional (respectively,
m g-dimensional) polytope ® ¢ R" xn containing a D-unstable point and
such that all (m,4 — 1)-dimensional (respectively, (mp — 1)-dimensional)
faces of @ are D-stable.

Proof: Under Assumption A, we need to consider nine cases.

Case I—a>—o0, b<oo, n=2: Consider the affine, one-to-one map

b X
BN
2
and the corresponding one-dimensional polytope @ = {f(x)]|x| < 1}.
The point in @ corresponding to x = 0 is clearly D-unstable. It suffices
to prove that the characteristic polynomials A+ and A~ of f(x) —
and al - f(x), respectively, are Hurwitz for all x # 0. This is in fact
true since AY(s) = s> +1(b—a)s +x* and A7 (s) = +3 s(b—a)s+
1(b —a)* + x? have posmve coefficients for x # 0.

f(X):[

Case II—a>—o0, b<oco, n=3: Let
b 1 —Xx
fx,»y=]-1 b -~y
x y a -;;b

It is sufficient to show that the characteristic polynomials A* and A~ of

A*(s) =5* + (b —a)s® + (1 +xTx +yTy + (b —
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S(x, y)—bl and al —f(x, y), respectively, are Hurwitz for #0.

A straightforward calculation yields A*.(s) =* +1 (b—a)s® +(1 +x2
y)s+%(b—a)andA (s)—s3 2(b —a)s? +(1+x + 3+ 2 —
a)*)s+1 5(b—a)(14+2x? 42y +(b - a)z) Each polynomial has positive

X
coefficients for y] # Q. The fact that t

they are Hurwitz follows from

posxt1v1ty of the second-order leading prmc1pal minors M 3(b—
a)(x* +y?) and M; = L(b —a)(4 + 3x2 +3y? + 9(b —a)z) of the
corresponding 3 x 3 Hurwitz matrices.

Case III—b>—o00, a<oo, n>3: Let

b 1
fx, y) = [—1 b -y
L x v (a ;b) 1]
. A tedious calculation shows that A*(s) = (s +
a)"““A*(s) and A=(s) = (s + $(b —a)"* A~ (s), where

2
)
2
+ 2—;—5(2 +xTx + Y s +xTxyTy — (xTy)? + (@_;_‘ﬁ)

where x, y Gl?'i?
l(b

A=(s) =5 +3(b —a)s® + (l +xTx +yTy + ?(b -—a)2> s?

+(b -a) (1 + 2xx + %yry + %(b —a)2> s

2 :

(1 4+2xTx +2yTy + (b —a)).

b—a

2

+xTxyTy — (" y) + (

From the Schwartz inequality, A* and A~ have positive coefficients
when # 0. Furthermore, the third-order leading principal minors

of the corresponding 4 x 4 Hurwitz matrices of A+ and A~

o= (452) ((+ ()

XX+ YY)+ (T x — ¥y +4xT p)h)

a

_ 9 9 9
M7 (s)= (2 +5x7x + iny + 7Gx =Ty + (x’y)2> (b —ay

27 63 . 63 e 8 6
Jr(4+8 +8 >(b a)+—8—(b a).

Since M and M,  are positive, A* and A~
are Hurwitz.

The remaining six cases are handled similarly by choosing all eigen-
values in the interior of D, except for one or two on the boundary of D,
For example, for a > — 00, b = oo, n > 3, set

and, hence, A* and A~

a 1 —xT
S py=|-1 a -
x y (@a+0DI
Adopting Assumption B, suppose D is not of the form

{sla <Res < b}. Since D is convex, there exists a real ag € D such
that the line L = {ag + iB|8 € R} satisfies L ¢ D. Since D is con-
jugate symmetric and open, there exists a By > 0 such that op £ iy
are boundary points of D, but oy +i8 € D when |8| < f,. Further-
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more, there exists a & > 0 such that oy = 6 € D. Again invoking con-
vexity, the open diamond d; = intconv {ag £ 8B, o £ i} is con-
tained in D. To simplify the problem, consider the open diamond
ds = (1/Bo)(ds — o) = intconv { +i, +5}. We need only construct
a single polytope ® containing a matrix with a pair of eigenvalues at
47 and with all mp-dimensional faces containing a matrix with a pair
of eigenvalues at +/ and with all m;-dimensional faces consisting of
matrices with all eigenvalues in d;; then 8y ® + o/ satisfies the desired
properties with respect to dj.
Consider the (n? — 2n + 2)-dimensional polytope

w
w 1+x )7
X
® = —14+x —-w <e
y
y 4 0
4 00

where y, z € R" =2, Clearly, @, has a D-unstable point Matw =x =0,
y =z = 0. We will show that for sufficiently small ¢, every point in @,
except M is D-stable. Hence, ® = @, satisfies the desired properties.
Case I—n=2: Each point in ®, has characteristic polynomial
Aw,x,s) =s* +1—w? —x2, and hence has eigenvalues % i(1 —
w2 —x)'/2, Let e < (((1 +8)/2)'/2.
Case II—n=3: Each point in @, has characteristic polynomial

AW, %, 9,2,8) =8 +(1 —w? —x? -y —2%)s
—w(* - 2% 4+ 2xy2).
Let

Re A(w,x,y,z,a+iB)
g(w,x,y,z,a,6)=[ l

Im Aw,x,y, 2, a+iB)

18 eas S€€ 1 olynomial 1

straightforward calculation shows

It is easy to see that g is a polynomial function and, hence, analytic. A

0g
0w, B)

-0 0 L oo

Thus, from the implicit function theorem, there exists a unique

analytic function h:U — ®® such that h(0) = (1) and
gw, x,y,z, h(w, x,y,2)) =0 forevery [w x y zf € U.
(4] 0 . .
Next, let e | = h~ e A tedious computation shows
2
de, _ 882 =0
ow,x,», 2| ow,x,», 0 [o]|
0 0
o o
0 0
32€| 8262 7
d(w, x, y, 2" T 0w, x, p, 20 -

oo oo
o o o o

From Lemma 3.1, there exists an ¢ >0 such that e;(w, x, ¥, 2) <

~(1/8)lei(w, x, y, z)| whenever 0 # |[[w x y z['|| <e. Since e,

and e, are continuous, we may also assume |¢;| <1; i = 1,2.
h,

Returning to A =
h>

, it follows that A,(w,x,y,2) <1 —

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35, NO. 4, APRIL 1990

(1/6)!hl(w’ X, Y Z)I, ]hZ(wi X5 YV, Z)l < 1, and [h|(W, X5 Y, Z)—ll <1
forall[w x y zI” #0. Hence, h € d;.
Case III—n>3: We have

AW, x,9,2,8) =5 +(1—-w? —x* —xTx -y  y)s?
—wyTy =2y z—wi')s +y vy 2z - T 2).
Let

"Re A(w,x,y,z,a+if)
gw,x,y,z2,a,8) = ] .

LIm AW, x,y,2,a+if)
Again, g is a polynomial function; in this case,

- ][2 N

O, B)

Thus, there exists an open U C R ™2 with 0c U and h:U - ®
such that #(0) =

- 00 o0

0
i and g(w, x, ¥, 2, h(w, x, y, 2)) = 0 for every

w x y zI €U. Let ‘:el]:h—[o].’l‘hen
() 1

ael . aez -0
ow,x, 3,2 |0 aw,x,3,2)| o ’
0 0
0 0
0 0
d%e, d%e;
S N - —r e 4 ==
6(W,X,y,z)2l 4] 3(W,x,}’,z) | 0
0 0
1] 0
0 0

Applying Lemma 3.1 as in Case II, it follows that A(w, x, y, 2) € ds
forevery [w x y z) #0. m]

Note that Theorem 3.2 also implies that the half-planes constructed
in Lemma 2.1 are maximal in the sense that there exists a D-unstable
matrix M in R" <" such that every half-plane containing M of diménsion
greater than n> —m, or n* —mp must also contain a D-unstable matrix.
Indeed, if this were not the case, the arguments in Theorem 3.2 could
be used to prove that m, and mp are not minimal.

IV. ConcLusions

Our results demonstrate to what extent the techniques for checking
polytope stability proposed in [1] and [3] can be extended to the case of
n x n matrices. We have shown that, without further information describ-
ing the particular structure of a polytope, either (2n — 4)-dimensional
or (2n — 2)-dimensional faces need to be checked for D-stability, de-
pending on the structure of D. Since testing even one such face can be
a formidable task when n is large, and since the number of 2n — 4)-
dimensional and (2n — 2)-dimensional faces grow exponentially with n,
more work needs to be done before a computationally tractable algorithm
can be devised for checking D-stability. It is our hope, however, that our
work will be useful as an integral part of some future coberent theory of
robust stability.

ACKNOWLEDGMENT

The author wishes to express his gratitude to Prof. C. L. DeMarco
for his valuable suggestions during the course of this research.

REFERENCES

{1} A. C. Bartlett, C. V. Hollot, and H. Lin, “Root locations of an entire polytope
of polynomials: It suffices to check the edges,” in Proc. Amer. Contr. Conf.,
1987, pp. 1611-1616.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35, NO. 4, APRIL 1990

12]
[3]

[4]
(51
[6]

N. K. Bose, “A system-theoretic approach to stability of sets of polynomials,”
Contemp. Math., vol. 47, pp. 25-34, 1985.

V. L. Kharitonov, “Asymptotic stability of an equilibrium position of a family of
systems of linear differential equations,” Differential’nye Uravneniya, vol. 14,
no. 11, pp. 1483-1485, 1978.

J. D. Cobb and C. L. DeMarco, “The minimal dimension of stable faces required
to guarantee ‘stability of a matrix polytope,” submitted.

A. Bronsted, An Introduction to Convex Polytopes. New York: Springer-
Verlag, 1983.

L. A. Lusternik and V. I. Sobolev, Elements of Functional Analysis. New
York: Gordon and Breach, 1968.

473



