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The Minimal Dimension of Stable Faces Required to
Guarantee Stability of a Matrix Polytope

J. DANIEL COBB AND CHRISTOPHER L. DEMARCO

Abstract—We consider the problem of determining whether each point
in a polytope of n X n matrices is stable. Our approach is to check
stability of certain faces of the polytope. For n = 3, we show that
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stability of each point in every (2n ~ 4)-dimensional face guarantees
stability of the entire polytope. Furthermore, we prove that, for any k <
n?, there exists a k-dimensional polytope containing a strictly unstable
point and such that all its subpolytopes of dimension min {k — 1,2n —
5} are stable.

I. BACKGROUND AND INTRODUCTION

In this note we consider the problem of ascertaining whether certain
subsets of R"*” consist entirely of stable matrices. (Here we take stability
of 2 matrix to mean that all its eigenvalues are in the open left-half
plane.) First we need some definitions. A (convex) polytope ® in vector
space V is the convex hull of any nonempty finite subset of ¥. The

“dimension of @ is the dimension of the affine hull aff () of @. The

relative boundary of @ is the boundary of @ as a subset of the topological
space aff ®@. A face of ® is any set of the form IT N ®, where I1 is a
supporting hyperplane of ®. A vertex of ® is a zero-dimensional face. An
edge of @ is a one-dimensional face. A subpolytope of @ is the convex
hull of any set of vertices of ®. Finally, a k-dimensional half-plane in V
is any nonempty set of the form 3¢ = R N S, where X is a closed half-
space, S is a k-dimensional affine subspace, and S € R. (Note that this
implies that the affine hull of JC is simply S.)

In the robust control literature, considerable interest has been generated
by the problem of determining whether stability of a polytope in either R”
or R"*" can be guaranteed simply by checking stability of low-
dimensional faces. (Stability of a vector x € R" means simply that the
polynomial s" + X,s"~! + -+ + x; is Hurwitz.) We first note that the
cases n = 0 and n = 1 are trivial; stability of the vertices always
guarantees stability of the polytope. Several recent papers consider the
case n = 2. For example, polynomial polytopes of a particularly simple
structure (‘‘interval polynomials’’) were addressed by Kharitonov [1];
he showed that only four specially constructed vertices need be checked.
A more recent result of Bartlett, Hollot, and Lin [2] demonstrates that, for
an arbitrary polynomial polytope, checking all edges is sufficient to
guarantee stability of ®. With respect to polytopes in R"*”, Fu and
Barmish [3] have shown that stability of all one-dimensional subpolytopes
is insufficient to guarantee stability of ®. DeMarco [4] has shown that, for
n = 3, (n — 2)-dimensional faces are insufficient, but 27 -dimensional
faces are sufficient.

In this note we refine the bounds of [4] and show that stability of all m-
dimensional faces is sufficient to guarantee stability of ®, where

m(n)= {;;,—4,

Furthermore, we show that for any n and k < n? there exists a polytope
of dimension k, containing a strictly unstable point (a matrix with an
eigenvalue A satisfying Re A > 0), and such that all its min {k — 1, m —
1}-dimensional subpolytopes are stable; hence, in this sense, m is
minimal.

n=2
n>2"

II. SUFFICIENCY OF m

Throughout our analysis, we will make extensive use of the fact that
any affine, one-to-one map f:R¥ — R™ determines an affine isomor-
phism between R* and f(R*). Among other things, this implies that, for
any polytope ® ¢ R¥, f(®) is also a polytope of the same dimension as
@ furthermore, f sets up a one-to-one correspondence between g-
dimensional faces of ® and g-dimensional faces of f(®). In addition, f
maps each k-dimensional half-plane in ®R¥ into another k-dimensional
half-plane (e.g., see [5]). Finally, we note that every polytope is compact
and that the set {x € R*|||x|l» = 1} is a polytope whose g-dimensional
faces are generated by fixing k — g entties of x at either + 1 and letting
the remaining g entries vary independently over [~ 1, 1].

With these observations in mind, we prove a result characterizing the
affine structure of the set of unstable points in R"*",

Lemma 2.1: For each unstable 4 € R"*" there exists an (n2 — m)-
dimensional half-plane 3¢ C R"*" such that: 1) A € JC;and2) B € X
implies B is unstable.
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Proof:
Case I—A Has a Real Eigenvalue \g = 0: Let T = [v W],
where v is an eigenvector corresponding to Ao and W is chosen to make T
nonsingular. Clearly, the map f:R**~"+! — R"*" determined by

- Ay -
f(xyy,z)"T[o Z] T'

is affine and one-to-one. Let JC be the (n2 — n + 1)-dimensional half-
plane

X={f\ 3, DNzN, y € R, Z € R

Then A € 3 and every matrix in JC is unstable. Since n2 — n + 1 = n?
— m, we need only select any (n2 — m)-dimensional half-plane 3C
satisfying 4 € 3¢ C IC.

Case II—A Has a Complex Eigenvalue Pair oy * i3 with oy
> 0:Let T = [vw.X], where v + iw is an eigenvector corresponding to
o + B and X is chosen to make T nonsingular. Let JC be the (n2 — 2n
+ 4)-dimensional half-plane

wefe[s 1]

{tr U = 204 descrxbes a four-dimensional half- plane, since tr U = (U,
F\ N MDD a1 PP Iy PRI S

I).) 3C contains only unstabie points, since tr U = 2 « implies U has at
least one eigenvalue A with Re A = oy. Also, 4 € 3C, since our choice of

T guarantees that A has
U= o 50 .
[ —Bo a0 ]

Finally, n? — 2n + 4 = n? — m, so the desired 3¢ C JC exists. [
Next we prove an easy result concerning the intersection of affine sets.
Lemma 2.2: et V be a p-dimensional Euclidean space, 3¢ C Va k-

dimensional half-plane, and I" a g-dimensional affine subspace with k& +

q > p. Consider any vector x, € JC N T'. There exists a (kK + g — p)-

dimensional half-plane  such that x, € ¥ c 3¢ N T.

Proof: By definition, 3¢ = R N S, where R is a closed half-space
and S is a k-dimensional affine subspace satisfying S € R. There exists
an affine subspace § C SN I'withdimS = k + ¢ — pandx, € §. If §
C R letd c RN Sbeany (k + g — p)-dimensional half-space
containing xo. ThenJCL CRNS NT = NT. HS ¢ R, 1et & =R

"N S. Thenxy € I, sincexy € I NT C R. Also, dimF = k + g —
' p, since JC is nonempty. ]
We are now in a position to prove our first main result.
Theorem 2.3: Stability of every matrix in every m-dimensional face of

@ guarantees stability of every matrix in ®.

Proof: Our arguments here are similiar to those used in [2, Lemma
1]. Suppose @ is an unstable polytope of dimension & > m. Then there
exists an unstable matrix 4, € ®,. From Lemma 2.1, there is an (#2 —
m)-dimensional half plane JC,, consisting entirely of unstable points and
containing A;. Since 3C, is unbounded, there exists an A, € JC; lying on
the boundary of ®; and, hence, in one of its (X — 1)-dimensional faces
®..1. From Lemma 2.2, the intersection 3C; N aff (#;_,) contains a (k
— m — 1)-dimensional half-plane 3C, such that A, € 3C,. Proceeding
inductively, we find there exists an m-dimensioanl face ®,, and a point
Ay-m € @, such that A,_,, is unstable. 0

tr U=20p, Y € @2)(::—2, ZeE l}an—zxn—23 .
J

II. MINIMALITY OF m

‘Our next task is to show that m is the smallest integer such that stability
of all m-dimensional faces of ® guarantees stability of @.

Theorem 3.1: For each integer n = 2 there exists an m-dimensional
polytope ® C R”*” containing an unstable point and such that all its (m
— 1)-dimensional faces are stable.

Proof:

Case I—n = 2: Consider the affine, one-to-one map

S00= [_Ox _"1]
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and the corresponding one-dimensional polytope @ = {f(x)||x| = 1}.
Each matrix in @ has characteristic polynomial A(s) = s? + 5 + x2;
hence, each vertex of ®(i.e., x = =1) is stable, but the point
corresponding to x = O is unstable.

Case II—n = 3: The two-dimensional polytope

{7 2INE-]

‘has characteristic polynomial A(s) = s° + 5?4+ aA+x2+y)s + 1.

Each coefficient of A(s) is positive, and the corresponding 2 X 2 Hurwitz
matrix has its leading principal second-order minor equal to M,(x, y) =
x? + y2. Thus, each edge is stable, but the matrix corresponding to x = y
= 0 is unstable. :

Case III—n = 4: Consider the (2n — 4)-dimensional polytope

EEEE]

A routine calculation shows that @ has characteristic polynomial p(s) =
(c- + l\n 4Aln\ whara

S§j, WiiCré

A(S)=s*+283+ 2+ xTx+yTy)s?
+QR+xTx+yTy)s+ 1 +xTxyTy—(xTy)2

From the Schwartz inequality, it is clear that all coefficients of A are
strictly positive. The corresponding 4 X 4 Hurwitz matrix has its leading
principal third-order minor equal to

My(x, y)=4xTx+4yTy+4(xTy)2+ (xTx—yTy)2

Clearly, M; = 0 with equality if and only if x = y = 0, Thus, the (2n —
5)-dimensional faces of ® are stable, but the point corresponding tox = y
= 0 is unstable. ' O

It is interesting to note that Theorem 3.1 also implies that the half-
planes considered in Lemma 2.1 are maximal in the sense that there exists
an unstable matrix A in R”*" such that every half-plane of dimension
greater than n> — m containing A must also contain a stable matrix.
Indeed, if this were not the case, the arguments in Theorem 2.3 could be
used to prove that m is not minimal.

IV. A STRONGER VERSION OF THE MINIMALITY THEOREM

The construction in the proof of Theorem 3.1 is weak in the following
three respects: 1) The polytope ® contains only a single marginally
unstable matrix (i.e., a matrix having all eigenvalues A satisfying Re A <
0 and at least one with Re A = 0). 2) The construction yields only a
polytope of dimension m. 3) Arbitrary subpolytopes are not considered;
thus it is not clear that checking all subpolytopes of dimension, say m —
1, would not guarantee stability. The minimality proof would be more
convincing if it could be extended to give a family of polytopes, each: 1)
containing a strictly unstable point (and hence, infinitely many unstable
points); 2) having arbitrary dimension &; and 3) having all min {k — 1, m
— 1}-dimensional subpolytopes stable.

Theorem 4.2 shows that such improvements over Theorem 3.1 can be
made. The proof requires a simple lemma. For any normed linear space
V, subset  C V, and point ¥y € V consider the distance function

d(v, M= inf |y-wl.
weR

Let conv () denote the convex hull of Q.

Lemma 4.1: Suppose @ C V'is convex, ¢ > 0, and ' C ¥ is any set
such that d(y, Q) < e for every y € T. Then d(y, Q) < ¢ for every n €
conv (@ UT.

Proof: Each n € conv (@ U T') is of the form 3 = an, + (1 -
a)n,, wherea € [0, 11and 9, 9, € @ U T. There exist w,, w, €  such
that [l — wi| < eand ljns — w2|| < e Letw = aw; + (I — a)w,.
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Then w € Q, and

d(n, =in-w|
=lla(gp—w)+1-a)(n—-w)|
Zalfm—wil+ 1 -a)ln—wl|
<e. O

Theorem 4.2: For any integers n, k withn = 2and 1 < k < n?, there
exists a polytope ®; of dimension k containing a strictly unstable point
and such that each min {k — 1, m — 1}-dimensional subpolytope is
stable.

Proof: Suppose a marginally unstable polytope ®; of dimension & is
constructed such that all its min {k — 1, m — 1} subpolytopes are stable.
Then, since the set of stable points in [R”7** is open and the union of all
min {k — 1, m — 1}-dimensional subpolytopes of @, is compact, the
subpolytopes of ®, = ®, + eI of the same dimension are stable for
sufficiently small e, but @, is strictly unstable. Thus, it suffices to

construct any k-dimensional unstable ®; with stable subpolytopes.

Ifn =2, let
_1 0 x
Jx, p)= [_x _1] ,

where x, y range over ®; otherwise, let

0 1 —xT
f(x.y)=[—l 0 ~y7]
x y -1

where x, y € R"~2. We consider two cases; first, assume k& < m. Define
Je:R¥ » R"*7 according to S([%1, [2]), where the vectors x and y are
partitioned in any way such that [¥] € R*. Since each f; is affine and

'3

one-to-one, the set
Y11 <1
z ]

is a k-dimensional polytope. As in the proof of Theorem 3.1, each matrix
in Qy is stable except for the point corresponding to w = z = 0. The
union of the (k — 1)-dimensional subpolytopes of Q, is compact and
nowhere dense in f(R*); hence, there exist vectors w,, z, € f(R*) such

HIs

is unstable, but has all its (k — 1)-dimensional subpolytopes stable.
Next consider the case & > m. The union of the (m — 1)-dimensional

subpolytopes of the m-dimensional polytopes ® (defined in Theorem 3.1)

are compact and nowhere dense in f(R"™); hence, there exist x,, ¥, such

an

has all its (m — 1)-dimensional subpolytopes stable, but @ is unstable. If
n=2,let

Q= {fk(W, z)

@p= {fk(w‘*‘ Wo, 2+ Z0)

Q= {f(x+xo, ¥+ o)

- L1 22
g{x, ¥, 2)=f(x, y)+ [0 23] .

Otherwise, define

2 22 23 i Zn
2n+1 Zns2 Zn+3 e 2an
g(x’ B ) z)=f(x: y)+ 0 0 22n+1 Zn-2
Y 0 Zn2-3n47 Zn2-2m+4
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In each case, z € R™-". Also let g (x, y, w) = g(x, », [«Dv]), where
w € RF-27+4 and ¢ > 0. Note that each g, is affine and one-to-one.
Now consider the k-dimensional polytope
< 1] .

]

If we choose the matrix norm || M| = max | my], it follows that for every
vertex 4 of @, there exists a vertex A of  such that |4 — 4| < e.
Furthermore, every (m — 1)-dimensional subpolytope of ®;, can be
expressed as a disjoint finite union U A,, where each A, is the convex hull
of m — 1 vertices Ay, *++, A,,_y of ®. Suppose A,, - -+, A, € Q and
Aq+h o Aoy & Q;letQ = conv {Ah ‘ ",Aq’ Aq+l’ o 'sA-m—l};
where each A, is a vertex of @ satisfying [4; — A;]] < ¢, andletT' =
{44+, "+, Am_1}. From Lemma 4.1, every B € conv {A, -,
Am-1} C conv (QUT) satisfies d(B,Q) < e. Hence, for sufficiently
small €, each (m — 1)-dimensional subpolytope of ®,, is stable. O

Cp.= {gke(x, ¥, W)

V. CONCLUSIONS

Our results demonstrate to what extent the technigues for checking
polytope stability proposed in [2] can be extended to the case of n X n
matrices. We have shown that, without further information describing the
particular structure of a polytope, (2n — 4)-dimensional faces must be
checked for stability. Since testing even one such face can be a formidable
task when n is large, and since the number of (2n — 4)-dimensional faces
grows exponentially with n, more work needs to be done before a
computationally tractable algorithm can be devised for checking stability.
It is our hope, however, that our work will be useful as an integral part of
some future coherent theory of robust stability.
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