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Linear Compensaior Designs Based Exciusiveiy on
Input-Output Information are Never Robust
with Respect to Unmodeled Dynamics

J. BANIEL COBB

Abstract—We investigate the effects of unmodeled, higher order
dynamics or parasitics on the stability of linear control systems. We first
describe a class of perturbations of a given state equation which cannot be
distinguished from the original on the basis of input-output measure-
ments alone. Then it is shown that, given any plant~compensator pair,
such perturbations of each system can always be found which destabilize
the closed-loop configuration. Finally, the effect of destabilizing pertur-
bations on output behavior is explored.

1. INTRODUCTION

The effects of high-frequency or parasitic phenomena on closed-loop
system performance have long been studied. A popular framework for
addressing this issue has been that of singular perturbation theory (see,
e.g., [1], [2]). The point of view that parasitics are ultimately connected
with unmodeled plant dynamics has become quite popular in recent years,
sometimes with surprising consequences. For example, it was shown by
Rohrs er al. [8] and Ioannou and Kokotovic [3] that high-frequency
phenomena can lead to instability in adaptive control schemes. Adaptive

controllers hping !—ughly nonlinear, a natural question to ask is whether
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parasitics could have a similar destabilizing effect on control systems
which are based on linear compensators. This was answered in the
affirmative by Khalil in [4] and [5]. A notable effort to circumvent these
difficulties in the case of linear, time-invariant systems was made by
Vidyasagar, culminating in the results of [6] and [7].

Our work is most similar to [7], but differs primarily in that we
investigate the stability of a closed-loop system when both the plant and
compensator are perturbed. The idea of perturbing both systems has been
largely neglected in the literature (with the notable exception of [6]), even
though one can easily make a strong case for considering such
perturbations. Indeed, one need only recognize that a compensator, like
the plant, is a physical system governed by a mathematical model which is
inherently subject to uncertainty.

In light of examples such as those contained in [4] and [S], even
arbitrarily small model errors are to be feared since such effects have the
capability of destabilizing a system just as certainly as larger errors do. In
fact, those examples illustrate that in some cases, small errors can cause
greater instability than do larger ones.

In this paper, we intend to show that, when uncertainties in both plant
and compensator are taken into account, even strictly proper compensa-
tors are subject to parasitic destabilization. Hence, properness of the
compensator is really not the pivotal issue here as it is in [7]. We will
show that, if only input-output information concerning the plant and
compensator is available, robust compensation can never be achieved.

The results of this paper are by nature primarily negative. We do not
claim to have a clear understanding yet of exactly what constitutes
sufficient information for robust compensation, although we do mention a
possible approach to finding an answer in Section V. It is hoped that our
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resuits wiil stimuiate further discussion in an area which has been
neglected by all but a handful of researchers.

II. PRELIMINARIES

We study systems characterized by the linear, time-invariant state
equations

X=Ax+Bu, y=Cx+Du (¢8)

and perturbations of (1) given by

I 0 X Ay Ay X B -
B R P | R R

(P)

where the submatrices in (2) satisfy
A“—AleZ—ZIAz]:A, B;—Ale ;lezzB (3)
C\~CA ' Ay=C, ~C,A;,'B,=D @)

and A, is nonsingular. If we set ¢ = 0 in (2) and eliminate £, (1) is
obtained; hence, (2) with ¢ = 0 may be thought of as a state augmentation
of (1). Setting ¢ > 0 in (2) constitutes a perturbation of that augmentation.
For the moment, we allow A,, to be either stable or unstable.

To aid our analysis, we will use the decomposition for singularly
perturbed systems developed in [10] where it is shown that there exist real
matrix-valued analytic maps ¢ — M, and ¢ — N,, defined on some
interval [0, 3), such that M, and N, are square and nonsingular for every ¢
and

I 0 fr oo Aun A, | A 0
M. [0 61] Ne= [o A,f] > M. [Au Azz] Ne= [ 0 1]
&3]

with A, and A, analytic and Ay, nilpotent. According to [10], the
matrices M, and /N, are unique up to change of bases; hence, we may take
M, and N, to be any matrices which achieve the decomposition (5) ate =
0. For example, let

-1
I —A|2A22 I 0
Mo= [o 1 o No= 1 a4, 4|

Next, define

By | _ B, ~
[B,E] =M, [Bz] ,[Ce Crl=1C; C)N.. 6)

Equations (5) and (6) yield the decoupled state equations

I 0 X _ Ase 0 Xs + B, u
0 A4 fe X, T 0 I Xy B e
=Csxs+ Crexy O]

where
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We now present a series of technical results which will be useful in
Sections IIT and IV.
Lemma l: Ay = A, By = B, Cyg = C, Bfo = Bz, Cfg = CzAz_zl,
and Ay, = eF, for every ¢ € [0, 8) where Fy = A"
Proof: From (5) and (6), we have

Ao 0] _ Ay An 140
[ 0 1] =Mo [Az. An]- No= [0 1] ’
B:O _ B1 . B

[Co Cpl=IC GIN=[C GCAL1.

Let

M= erle
‘ [MZIS

| Ns o

My N-'= Ve AVi2e
R =12 M

My, ¢ Naje Ny,

and note that

| 1 0 | | I 0 l | I ¢
s = -1
N, Ay Ap |’ M. 0 el 0 Ay N

We thus have eM,,, = A fﬁﬁm so Ay, = eF, where Fy = MypoN ;2}) =
A O

From Ay, = ¢F,, we immediately obtain the well-known result that the
eigenvalues of (2) which tend to infinity as € — 0 are ‘‘close’’ to those of
(1/€)Ay; (see, e.g., [2, Corollary 2.1]). One useful way of stating this
result is the following.

Lemma 2: If p is an eigenvalue of Ay, ¥ > 0, and R < oo, then there
exists €, > 0 such that (2) has an eigenvalue \, satisfying || > R and
larg A, — arg (1/e)u| < vy whenever 0 < € < ¢.

Proaf: From (7), ihe eigenvalues of (1/¢)F ;‘ are also eigenvalues
of (2). Since Fy! = Ay and F! is continuous in ¢, each F~! has an
eigenvalue u, with g, = p as e~ 0*. Choose ¢ so that (1/¢){u.| > R and
larg . — arg u| < v whenever 0 < ¢ < ¢, and let \, = (1/€)p,. Then
N is an eigenvalue of (2), |\ > R, and |arg \, — arg (1/e)u| = larg .
— arg p| < 7. a

Suppose the transfer matrices of (1) and (2) are P and P,, respectively.
We will need conditions under which an eigenvalue of (2) is also a pole
of P..

Lemma 3: If (Ay, By, C,) is controllable and observable, there exists
€ > 0and R < oo such that every eigenvalue A, of (2) satisfying || >
R is also a pole of P, whenever 0 < ¢ < ¢.

Proof: An eigenvalue A, of (2) is a pole of P, if

}\tI“AII "AIZ B{ =M-! )\EI—ASE 0 Bss
—AZI E)\EI"‘AZZ Bz - € 0 EA(I*F:I st

I 0 _
[0 Fs] N oL

—

0 1
and
)\él_All _AIZ
~An  NI-A4pn
Cl C2
- Me—l 0 )\eIBAse )\IEF_I I 0 N1 (9
o I e o £ N O

Cse Cf eF : !

have full rank. Choose R > max {|\| |\ is an eigenvalue of A}. From
Lemma 1, (Fy!, By, CroF ') = (A, By, Cy). Hence, there exists ep >
0 such that, whenever 0 < e < ¢, (F7!, By, C;.F~') is controllable and
observable and [A,| > R implies that ), is not an eigenvalue of A,. It
follows immediately that all matrices on the right-hand sides of (8) and (9)
have full rank. O
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II. INPUT-OUTPUT EQUIVALENCE

In this section, we explore the relationship between the nominal and
perturbed systems (1) and (2) and discuss the conditions under which they
are indistinguishable if only input-output information is available.
Consider the process of obtaining or verifying an input-output model of a
physical system. We are allowed to take measurements by applying an
input signal starting at £ = 0 and by observing the output; it is assumed
that no direct access to internal states is possible. Once a nominal model is
obtained, a controliable and observable realization can be chosen,
yielding the state equation (1). Since we have no direct control over initial
states except through the input ports, and since # = 0 presumably occurs
long after the system was built, the system may be assumed initially at
rest. Hence, we choose x(0) = 0 and £(0) = 0 in (1) and (2).

We define the class of admissible input signals U to be all C! functions
u:[0, 71 — R™ satisfying max ||u(f)|| < Ko, max |u(?)|| < K|, and u(0)
= () where the constants 7 < o, Ky < o, and K| < oo are independent
of u. From an engineering standpoint, it is not unreasonable to place such
restrictions on u. Indeed, in any real-world scenario, there is a maximum
length of time one would be willing to invest in collecting data, as well as
a maximum amplitude of voltage, force, or other input quantity that could
possibly be generated using available technology. Furthermore, there is
always an upper bound on the rate at which u(#) can be made to vary (e.g.,
every amplifier has a maximum slew rate). Thus, the constants 7, Ky, and
K,, although possibly very large, must be finite. Since no input is applied
prior to ¥ = 0 and since K; < oo, we must have u(0) = 0. We would
surely be in serious trouble if, in order to design a robust compensator, we
needed the capability of generating inputs over arbitrarily large intervals
of time or with arbitrarily large amplitudes or rates of change.

Associated with any real-world measuring device is a minimum error
which can be detected. For example, if a function y represents an output
voltage, velocity, or other physical quantity of interest, there must exist a
number 6 > 0, characteristic of the measuring device alone, such that
another output § cannot be distinguished from y if

sup {ly(—FOlIll  O=st=7}<i. 109
For the remainder of the paper, we assume a fixed source of input signals
and measurements and, consequently, a fixed set ‘U and number § > 0.

The quantities U and & together determine an equivalence between
systems: two systems are indistinguishable under input-output measure-
ment if for every ¥ € U, the output functions y and ¥ of the two systems
satisfy (10). The next result applies this idea to the nominal and perturbed
models (1) and (2).

Theorem 1: If A,, is strictly stable, there exists ¢¢ > 0 such that,
whenever # € U and 0 < € < ¢, the respective outputs y and y, of (1)
and (2) satisfy max {||y(¥) — y(O)| |0 = ¢ = 7} < 4.

Proof: We first note that yo(f) = [ Cso exp (nAs0)Bsou(t — n) dy
- CroBrou(t) = y(t). Hence, we need only show that there exists ¢ such
that ||¥.(#) — »o(#)]] < 6 whenever 0 < f < 7and 0 < € < ¢.
Decomposing y. = ¥sc + Yy in the obvious way, we have ||y, (¢) —
ysO(t)" = KO EB u Cse exp (nAse)Bse - CSO exp ("ASO)BSOH d"'~ Choose €1
> 0 such that 0 < e < ¢ implies max {||Cse exp (nAs) Bs, — Cso €xp
(nAs0)Byoll [0 = 7 < 7} < 6/(2K,7). Integrating by parts, we obtain

exp <§F;’>

“ | Brell + Kol CreBre~ CroBroll.

=<Kl Gl | n

T
0

There exist e, > 0 and K < oo such that [lexp (¢F 71|l < K, ||Cre]| < K,
and || By || < K whenever t = 0and 0 < € < . Let§ = 8/(4K, KK
+ 7)). We know that there exists e; > 0 such that [lexp (n/e)F )| < §
whenever § < 7 < rand 0 < ¢ < ¢ (see, e.g., [13]). Finally, there
exists e4 > 0 such that | Cr By — CpBp| < 6/4Kgwhene < ¢. Let g
= min {e,, &, €3, €}. Then 0 < e < ¢ implies || y.(!) — (|| < 6/2
+ K\ K¥KE + 76) + 6/4 = 6. O

We have thus established that, for sufficiently small ¢, (1) and (2) are
indistinguishable on the basis of input-output information. Hence,
although the physical system is nominally described by (1), an equally
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valid model from an input-output perspective is given by (2) with €
sufficiently small and Ay, strictly stable.

IV. CLOSED-LOOP DESTABILIZATION

We are now ready to investigate the effects that the system perturba-
tions in Section II have on a closed-loop configuration. Consider the
feedback compensator governed by

2=Fz+ Gy, u=Hz+v. (11)
We consider only compensators with strictly proper transfer matrices
since the results of [7] indicate that nonstrictly proper compensators are
never robust with respect to unmodeled dynamics. Perturbations of (11)
are of the form

ar 1r [ ol TR R
[7 o] [A &[] ]a],
Lo «fisd [ =)o) 6]
u=Hiz+ HyX+v (12)
where
Fy~FuF ) Fy=F, G- FuF ' G,=G (13)
~H,F ' Fy=H, —H,F,'G,=0 (14)

and F, is nonsingular. The discussion of Section IH applies equally well
to both plant and compensator.
Combining (1) and (13) in a standard feedback configuration yields

¥l 1 A BH 1. B v
2| | GC F+GDH z GD
y=Cx+DHz. (15)
Combining the perturbed systems (2) and (12) gives
1000 x?
07 00 Z
0 0 e 0O 5
0 0 0 ¢f {J
’-All BH, A, BH, X B
- GG Fy GG, Fj, Z + 0 v
Ay  BH, An BH, £ B,
| 6.e oo R | ] [0
y=Cix+Cyz. (16)

Let (15) and (16) have transfer matrices H and H,, respectively.

From this point on, we assume that 4, and Fy, are strictly stable
matrices. Thus, according to Theorem 1, (2) and (12) are equivalent to (1)
and (11) for sufficiently small € in an input-output sense. The perturbed

closed-loop system (16) is also of the form (2); no cbvious conclusions

can be drawn, however concerning stability of either (16) or the matrix

_| 42 B.H,
GO Fp |
In view of Lemmas 2-4 as related to (16), we see that the properties of X
as well as those of the matrices

Y= [%] , 2=[C, 0]

are crucial for understanding the behavior of (16).

We are ultimately interested not only in the eigenvalues of the closed-
loop system, but also in the poles of H, and the behavior of the system
output ¥(f). The next two results treat first the closed-loop poles and then
output behavior. As a means of quantifying instability, let « € (0, w/2) and
consider the open sector § = {5 € €& — {0}] |arg s| < a}.

Theorem 2: Suppose R < o, (X, Y, Z) is controllable and
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observable, and X is nonsingular with an eigenvalue in the sector S. Then
there exists ¢g > 0 such that H, has a pole p, € § satistying |[p| > R
whenever 0 < € < €.

Proof: Since X is nonsingular, the closed-loop system (16) is of the
form (2). Let 4 € S be an eigenvalue of X. There exists ¥ > 0 such that
s € S whenever |arg s — arg (1/e)u| < v. The result then follows from
Lemmas 2 and 3. d

Now consider behavior of the output y(f) in the closed-loop system
(16). Theorem 3 shows that under certain conditions, the instability
described in Theorem 2 also has a pronounced effect on y(f). Let m denote
Lebesgue measure.

Theorem 3: Suppose R < o0, 8,8, > 0, (X, Y, Z) is controllable and
observable, and X is nonsingular with an eigenvalue in the sector S.

1) There exists ¢g > 0 such that corresponding to each ¢ € (0, ¢y),
there exist vectors xo, € R”, zo. € R¥, o € R, {5 € R” with [ xo.)l,
fizoells fi£oells i oell < 81 and aset @, C [0, 1] with m{, < &, such that the
output y. of (20), subject to X(0) = Xy, 2(0) = Zoc, §(O) = &, {(O) =
$oe» and u = 0, satisfies || y()] > R forevery t € [0, 7] — Q..

2) There exists g > 0 such that corresponding to each ¢ € (0, ¢), there
exist a continuous function u:[0, 7] = R™ with flu(?)|| < § forall r €
{0, 7] and a set Q, C [0, 7] with m€, < &, such that the output of (20),
subject to x(0) = z(0) = £(0) = {(0) = Oand u = u,, satisfies || y. ()|
> Rforevery t € [0,7] — ©

Proof: 1) Since R is arbitrary and the system (16) is linear, we need
only prove the result for a single vector norm, say, the Euclidean norm.
The decomposition (7) may be applied to (16), vielding real-valued
analytic matrix functions M., N,, A, B;e, * - -, F, defined on an interval
[0, B]. Since Fy = X~! is nonsingular, F :‘ is analytic. It is shown in {15}
that there exists a continuous complex unitary matrix-valued function e =
U, defined for sufficiently small values of e that puts F~! into continuous
upper triangular form—i.e.,

Bre ®ize U7 Apaake
0 . .
U-'F-'U,=
€ € o - -
. . H+k— A+ ke
0 0w

where each of the maps ¢ — p;. and € — oy, is continuous. Additional row
and column interchanges can be used to reindex the u;; equivalently, U,
may be chosen so that p;9 € S.

Let

)
we==—— N, {
2| N 0

U,

Since N, is nonsingular on {0, 8), ||N.|| is nonzero. Standard norm
inequalitites reveal that [|W,|| < &,. From (7), it follows that the natural
response of (16) due to the initial condition w, is

J )= (CLU) exp ((UPF7'U,) an

2||N f :
0

From Lemma 1, (F; !, Cpo) = (X, ZX ") This pair is observable since
X is nonsingular; the corresponding observability matrix is

ZX! ¥4

Z zZX

zX = : X-!
Z):(rHErZ ZX’HIE-X

and the pair (X, Z) is observable. Thus, (U;'F;'Us, Crlo) is
observable. Since U;'Fy'U, is upper triangular, the first column of
Cro Uy is nonzero. Suppose oy # 0 is the ith entry of the first column of
CroUps. Then the same entry «, of Cy U, is nonzero for sufficiently small
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€. From (17), it follows that J, has ith entry ¥;.(£) = (6:/Q|| N.|))a. exp
((1/Jp1, ). Thus, Re ¥, has the ith entry

~ 1 1
Re Jic(£) = (61/ 2| N M exe| exp (3 Re picf) cos (7 Im gyt +arg o).

Since pyp € S, Re py, > 0 for small e. From elementary analysis, there
exists g > O such that 0 < ¢ < ¢ implies the existence of a set Q, with
m, < 6 and ||Re §i; ()| > Rforall ¢ € [0, 7] — Q.

We note that the initial condition w, may be complex. In general, the
natural response of (16) is of the form y(¢) = T'.(/)w where I’ (¢) is a real-
valued matrix. Hence, Re y(¢) = T'.(¢) Re w, and if we set [Xo, Zoc o (o] T
= Re wT, we obtain an output y, with ith entry y,(f) = Re 7. (¥).
Therefore, ||y (D] = |Ji(f)] > Rforall £ € [0, 7] — Q.. Finally, we
note that | xacl, 2ocl 1l £ocls 15l = [Re well < [lwell < 8.

2) Our approach is to construct an input function u, which steers the
system (20) from the origin to some state w, satisfying the conditions of
part 1), the transfer occurring on an arbitrarily small ¢ interval; then the
system will be allowed to evolve from
consider the pair (F~', F ' By.). From Lemma 1, (Fg', Fy'Bp) = (X,
XY). This pair is controllable since X is nonsingular; the corresponding
controllability matrix is

Xy --- X”*'E“!}’]
and (X, Y) is controllable. Hence, (F!, F !By} is controllable for
sufficiently small e. Let
Ve(t)=BF " exp (—tF;T)W.(r)"' exp (—7F7) (18)
where the Gramian W.(7) is given by W) = [; exp (—9F )
Fé_leeB};F:T exp (—9F_7) dy. W, is nonsingular for small e since
(FE“, F;‘st) is controllable (see [11, p. 184]). All matrices in (18)
converge and exp (~tF;T) converges uniformly on [0, 7] as ¢ = 0*;
hence, V. converges uniformly to . Thus, there exists a number M; <
o such that ||y (1)]| < M, for all ¢ € [0, 7] and e sufficiently small.
Choose M, < o such that || C;, exp (A, )| < M, for small € and all ¢
€ [0, 7] where C;, and A, are given by (7). Since N;' is continuous, we
know from part 1) that for sufficiently small ¢, there exist real vectors Xy, ,
20> §oe» and {o. with ||xoc ||, llzoclls ll£oells I Soell < 81/@Mi|N']]) and a
set {J, with mQ, < 8,/2 such that the corresponding output J, of (16)
satisfies )| 9. ()] > R + (Ma/My)6, for every t € {0, 7] — .. Let

Xoe
Xose =N-! 20¢
Xoge ¢ £oe

$oc

19

Then the output §, may be written §, = y;, + y;. where y, () = Cs, exp
(¢As,) Xos, and (1) = Cj, exp ((#/€) F ') xqr.. From (19), Xos || < 61/
My; therefore, |iy, (O] < (My/M,) 8, for every ¢ € [0, 7]. It follows that
.01 > vl — |yl > R foreach ¢t € [0, 7] — Q..

Next, define 2,(f) = Y. (£)Xos. Then ||xoz || < 6:/M, guarantees that
7)) < &, and & steers the system ¥ = F!'x + F~'Byu from the
originas ¢ = 0to xor at f = 7. (See, e.g., [11, p. 556].) Let

0<t<er

eT<I<T.

Then |ju.(f)] < &, and u, steers the second subsystem in (7) from the
origin at { = 0 to Xgz at'? = e7. U, also steers the first subsystem in (7)
from the origin to some state Xy, at = er. Since X, is given by the
convolution integral %o = [§ exp (£A;¢) Bs.u.() dt, the construction of
u, and uniform convergence of exp (£A;.) guarantee that Xp;, — 0 as ¢ —
0*. Hence, y;. — O uniformly on [0, 7} as ¢ = 0+ where J () = Ci,
exp (fA;)%s.. Applying the input u, steers the system (20) to w, =
N Fysexor ] Tat t = er. For t € {er, 7], the corresponding output is y,(f)
= Joelt — e1) + pr(t — en), 50 |y, () > R — || Fs(t — en)|| > R for
small e and all ¢ € [er, 7] — (e7 + ). Thus, if we choose ¢, sufficiently
small with €y < 8,/2,and Q, = [0, er] U (er + §.), we obtain m@, < 6,
and |y.()}] > Rforallt € [0, 7] — Q, whenever 0 < ¢ < ¢. [
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The divergence of the output of the closed-loop system described in
Theorem 3 is referred to in analysis texts as ‘‘almost uniform convergence
to infinity.’’ In view of the arbitrarily tight bounds that may be placed on
an input or initial condition which generate this divergent behavior, we
conclude that, if the assumptions of the theorem are met, unbounded
instability at the output of a closed-loop configuration can result from
arbitrarily small noise impinging on the system.

So far we have demonstrated that the existence of destabilizing
perturbations of the plant and compensator is guaranteed if a certain linear
algebra problem admits a solution. Indeed, if any Az, B, and C, are
chosen, (3) and (4) may be satisfied by simply selecting A, and Ay
arbitrarily and solving for A,;, By, and C,. A similar remark applies to
(13) and (14). It is sufficient, therefore, to find Ay, B, C,, Fp, G,, and
H, such that 1) Ay, and F; are strictly stable, 2) (X, Y, Z) is controllable
and observable, 3) X is nonsingular with an eigenvalue in S, and 4) (4)
and (14) are satisfied. Theorems 2 and 3 further indicate that, if 1)-4) are
met, the resulting instability in (16) becomes progressively worse as e —
0 since R may be chosen arbitrarily large. Thus, arbitrarily small
uncertainty can lead to arbitrarily large instability.

We now address the linear algebra problem 1)-4). We really need to
find only one solution in order to demonstrate the existence of
destabilizing perturbations; however, it is possible to do better. To obtain
an understanding of just how many destabilizing perturbations actually
exist, let (1), (2), (11), and (12) have orders n, n + A, k, and k + K,
respectively; defineg = (n + Mn+ A+ m+p+k+ DK+ k
+ p + m). Also, consider the variety in [R? consisting of all (4, - - -,
G, Fyy, -+, Hy) such that (3)-(6) and (13) and (14) are satisfied, and let
V C R denote the intersection of that variety with the subset in which
Ay and Fy, are strictly stable. V' may be interpreted as the set of all
possible state augmentations of (1) and (11) of order A and k,
respectively. Finally, let I' C [R? be the set of all points for which (X, Y,
Z) is controllable and observable and X is nonsingular with an eigenvalue
in S. We are interested in properties of the set V N T'.

Theorem 4:

1) ¥V N T is relatively open in V.
2) V C I'isnonempty if £ = 2 and eithera) D = Oand 7 = 2 0orb) D
# 0and 7 = rank D.

Proof:

1) This is obvious since I' is open in RY.
2) Suppose D = 0 and consider

275/(s+1)70 -+ 0 2hs/s+1D)F 0 -+ 0
0 L ue= 0

0 - ---0 0 - -+ 0

I(s)=

- Let (Ayp, By, Cy) and (Fy, G,, H,) be controllable and observable

realizations of Tand U, respectively. Then A,, and F; are strictly stable,
- CZAZ_ZIBZ = T(O) = D, and _HZF;ZIGZ = U(O) = (. Note that T
and U have degrees 7 and £. Since (X, Y, Z) has transfer function

V(s)=(I-T(s)U(s))'T(s)

2hs(s+ )/ ((s+ 1) *F-27+kg) 0 --- 0

0

0 L. 0
and V has characteristic polynomial A(s) = (s + 17tk — 27m+kg jt
follows that (X, Y, Z) is controllable and observable and X is nonsingular

with a unit eigenvalue.
Now suppose D # 0. There exist nonsingular matrices M and N such

that
I, 0
MDN = [ 0 0 ]
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generically unattainable in the presence of singular plant perturbations,”” IEEE
1/(s+1)-r+1 Trans. Automat. Contr., vol. AC-32, pp. 51-53, 1987.
1/(s+1) 0 {10} , “‘Global analyticity of a geometric decomposition for linear singularly
X petturbed systems,’’ Circuits, Syst., Signal Processing, vol. 5, pp. 139-152,

1004

Tisy=M"1 T —i, 1%86.

s 1/(s+ 1) l l N [t1] C. T. Chen, Linear System Theory and Design. New York: Holt, Rinehart,
] ' and Winston, 1984.
4

|
| 0 | Opremes
L

......... O svsters of ordinary differential eauations with several
] F. Hoppensteadt, “*On systems of ordinary differential equations with several

parameters multiplying the derivatives,”" J. Differential Eq., vol. 5, pp. 106-
. - 116, 1969.

2Kt g/ s+ DEQ -1 0 [13] S. L. Campbell and N. J. Rose, “‘Singular perturbation of autonomous linear

0 X systems,”” SIAM J. Math. Anal., vol. 10, pp. 542-551, 1979.
Uls)=N : : M. [14] G. C. Verghese, B. C. Levy, and T. Kailath, ‘A generalized state-space for
é L 0 singular systems,”” IEEE Trans. Automat. Contr., vol. AC-26, pp. 811-831,

1981.

: {15} H. Gingold, “*On continuous triangularization of matrix functions,” SIAM J.
Then Math. Anal., vol. 10, pp. 709-720, 1979.

V$)=U—-T)V(s)~ ' T(s)=M""

(S+ I)f/((S-‘}' I)er'—r + l_2¢i+){s)
Vs +1) 0 N1
1/(s+1)

0 L 0 res

has characteristic polynomial A(s) = (s + 1)/"¥(s + D7t -7+ _
piAk-relgy Reasoning similarly as for part a), we conclude that 4,, and
F,,; are strictly stable, (4) and (14) hold, (X, Y, Z) is controllable and
observable, and X is nonsingular with a unit eigenvalue.

To complete the proof, we need only choose Ay, Aj, Fiz, and Fy,
arbitrarily and solve for the remaining matrices from (3), {4) and (13),
(14). 4

Part 1) of Theorem 4 demonstrates that, in a certain sense, the high-
frequency effects which bring about closed-loop instability do not
correspond to the complement of a generic set, and hence cannot be
dismissed as merely a pathological case.

V. CONCLUSIONS

We have shown that input-output information alone is insufficient for
designing robust linear compensators. This conclusion leads one immedi-
ately to ask what further information is actually required to allow a robust
design. Although we cannot give a clear answer yet, we can offer some
insight. The development of our results indicates the high-frequency

behavior in (2) and (12) plays a role in destabilization. Such behavior is
closely related to the infinite-frequency structure of (2) and (12) with e =
0 (see, e.g., [14]). One might therefore suspect that some knowledge of
the poles and zeros at infinity in either the plant or compensator is
essential. The exact form of such information and whether it can be easily
measured are important topics for further research.
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