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Toward a Theory of Robust Compensation for
Systems with Unknown Parasitics

J. DANIEL COBB, MEMBER, IEEE

Abstract—We consider the problem of designing a robust compensator
based on a plant model with order uncertainty. The uncertainty is
characterized mathematically as a class of generalized singular perturba-
tions of the plant. This paper considers the case of static compensation. A
necessary and sufficient condition is established under which actual
closed-loop behavior is close to that predicted by the plant model under
sufficiently small singular perturbations. The condition is shown to be
generic.

I. INTRODUCTION

THE problem of robust compensation may be roughly stated as
that of designing a good controller for a given physical system
on the basis of a model which contains less than complete
information about that system. The resulting closed-loop configu-
ration should exhibit reasonable performance in spite of the
uncertain aspects of the system. In the strictest sense, every model
contains uncertainty; hence, any good controller design should
address the issue of robustness.

Among the many types of robust control theories appearing in
the literature is the asymptotic approach. Typical results in this
area guarantee reasonable closed-loop performance under suffi-
ciently small perturbations of a nomial model (e.g., variations in
the coefficients of a single differential equation). Although only
local in nature, such results are often a first step in developing a
global theory where an explicit characterization is attained for
classes of systems which can be simultaneously compensated. The
results of this paper fall into the asymptotic category.

It is possible to view most asymptotic robustness theories within
a common mathematical framework. Let @, Q, and 3 be
topological spaces, and let ® C ® x @ inherit subset topology.
®, Q, and 3 correspond to the sets of all possible models of
plants, compensators, and closed-loop systems, respectively. The
topologies on ® and Q are chosen so that small perturbations
characterize measurement error inherent in developing each
model; small perturbations in the topology of J reflect tolerable
closed-loop performance error. If ® is interpreted as the class of
all plant-compensator pairs which lead to closed-loop systems that
are well-defined and which satisfy any additional constraints
present in the design problem, we may naturally define the loop-
closing map C: ® — J which takes each plant and compensator
into their corresponding closed-loop configuration. Many robust-
ness questions then reduce to that of finding the points of
continuity of C. In other words, we wish to characterize the class
of all plant-compensator pairs such that small perturbations of
cach pair result in small perturbations in the closed-loop system.
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We now examine various existing theories which lie within the
asymptotic framework. The most obvious body of such results
centers around the well-known fact that, for state-space models,
the parameters of the closed-loop system are continuous functions
of the open-loop plant and compensator parameters. For example,
if we let @ be the set of all matrix triples ¢ = (A4, B, C) and Q
consist of all feedback matrices K, and if we combine ¢ and K in a
standard way, then ® = @ x Q and J consists of triples C (£, K)
= (A + BKC, B, C). Adopting Euclidean topology on ®, Q, and
3, it follows that C is continuous everywhere, i.e., every
compensator is robust relative to every plant. One immediate
consequence of this observation is that closed-loop eigenvalues
are continuous functions of plant and compensator parameters;
hence, every stable closed-loop configuration remains stable
under sufficiently small parameter variations. These facts are used
routinely in many control system analyses without  explicit
mention. It should be noted, however, that the perturbations
considered here do not alter either plant or compensator order.
Therefore, this approach alone is inadequate when dealing with
order uncertainty.

The main body of existing results that does deal with order
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singular perturbation theory (see [1]-{3]). Here a typical analysis
treats a parametrized system of the form

I 0 . Au A12 Bl
[0 61] *= [AZI Azz:l x+ [32 u

y=[C Glx )

i i i tHina can ho tarmad
uncertainty in an asymptotic setting can be termed

with A,, stable and seeks to achieve some closed-loop perform-
ance criteria for all sufficiently small ¢ = 0. (In this case, we
might take @ = [0, 0).) A major drawback with this approach is
that explicit knowledge of the parasitic structure giving rise to
order uncertainty is assumed. If more than one perturbation (1)
need to be considered, serious problems may develop. For
example, the system

1 00 1 0 1

0 ¢ 0] x=}J0 -1 0]l x+]10 | u

0 0 ¢ 1 -1 1
y=[-110x 2

is nominally (¢ = 0) unstable, but can be stabilized with the static
compensator ¥ = 2y. The perturbed system (¢ > 0) is also
stabilized by the same compensator for sufficiently small e.
Setting ¢ = 0, premultiplication of (2) by the matrix

O - D
—-_ O

1
M=]0
0

yields an equivalent system equation which may in turn be
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perturbed according to

1 00 1 1 0 1
0 ¢ O0lx=12 -1 -=-21]x+ u
0 0 ¢ 1 -1 1
y=[-11 0jx. A3)

In this case the compensator # = 2y yields a perturbed closed-
loop system having a pair of eigenvalues A, and N\, with
Re N\ @ 4+ as e = 0. Such divergent behavior does not
coincide with any reasonable definition of small perturbations in
J. We may therefore conclude that examination of a single
parasitic effect is in general not sufficient to guarantee robustness
of a compensator with respect to other order uncertainties.

Additional singular perturbation results include the multiple
time-scale extensions [7] and [8] and the robust compensation
theorems of [5]. Multiple time-scale techniques suffer from the
same drawback as single time-scale analyses based on (1) in that
they assume an explicit knowledge of parasitic structure. Also,
much less is known about the e-dependence of the time response
of multiple time-scale systems than in the single time-scale case.

In [5] it is shown that any compensator having a strictly proper
transfer function matrix, which stabilized (1) with e = 0, also
stabilizes (1) when ¢ > 0 is sufficiently small. Furthermore, it is
shown that the corresponding family of closed-loop transfer
matrices converges uniformly on compact subsets of the right-half
complex plane as e = 0*. These results thus provide a means for
robustly compensating a system in the presence of a large class of
possible perturbations. One drawback to this theory is that only
single time-scale systems (1) are treated. In practice, a much
larger class of perturbations may be required to model all relevant
effects. Additional problems are that the results of [5] do not take
into account uncertainties in the compensator model and that
uniform convergence on compact sets in @ is difficult to relate to
time-domain performance of the system.

Another notable asymptotic robustness theory is that of [6]
where the graph topology is introduced. Let ® and Q each be the
space of all rational matrices, 3 the space of strictly proper and
stable rational matrices, equipped with the H,, norm, and ® =
€1 (3). The graph topology is the weakest topology on @ and Q,
under which € is continuous. We have shown in [9], however,
that singularly perturbed systems generically do not converge in
the graph topology; hence, in this sense, robust compensation in
the presence of order uncertainty is unattainable. :

In view of the shortcomings of the existing asymptotic
techniques, we wish to propose a framework as well as some
preliminary results for an alternative robustness theory which will
be taken into account: 1) multirate and other relatively unexplored
classes of singular perturbations; 2) the necessity of dealing
simultaneously with a large class of system perturbations, each
corresponding to a possible higher order model; and 3) time-
domain behavior of the closed-loop system. Although treatment of
1) and 2) seems on the surface to be a formidable task, we will see
that it is possible to approach the problem in a roundabout way,
thus avoiding having to explicity characterize all possible parasitic
phenomena. We feel that the inclusion of 3) is a desirable feature
for any good robustness theory, since the goal of system design
must ultimately be satisfactory closed-loop time response. In view
of this fact, a time-domain approach has certain advantages over
frequency domain techniques, since the relationship between time
response and frequency-domain behavior can be rather complex.

Before becoming too engrossed in technicalities, we will briefly
describe (in rough terms) the problem we wish to address.
Consider the system

Ex=Ax+ Bu
£ )
y=Cx
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where E, A, B, are real matrices with £ and A square. We
assume that (4) exhibits existence and uniqueness of solutions for
each initial condition x, and each input function u; from [17] we
know that this is equivalent to

|SE—A]| # 0.

Such systems have been studied extensively (e.g., see [14]-[16]),
and are referred to as singular when E is singular and regular
otherwise. The polynomial

A(s)=|sE-A| ®)

may be considered the characteristic polynomial of (4) and its
roots the eigenvalues of £. An important property of singular
systems is that small perturbations in the entries of E and 4 can
change the system order; one exampie of this phenomenon is (1).

Suppose we wish to find a compensator of the form u = Ky —
v which is robust with respect to perturbations in E, A, B and C.
Since we are inevitably interested in time response, we might ask
which compensators result in a closed-loop system whose time
response varies continuously with E, A, B, and C, regardless of
the perturbation. Unfortunately, it is easy to show that for any X
there exist perturbations in the system matrices that yield
divergent behavior in the closed-loop system trajectories for some
initial conditions. A more meaningful problem can be formulated
by first observing that not necessarily all perturbations in the
matrix entries of (4) are physically realistic. For example, a
simple RC circuit consisting of a single resistor, capacitor, and
voltage source may be modeled as

eX=—-X+u

y=x )

where x is the capacitor voltage, R = 1, and C = e. Positive ¢
makes perfect physical sense, and it seems reasonable to try to
design a compensator based on the low-order model correspond-
ing to ¢ = 0. On the other hand, if ¢ is negative, the system
engineer could not expect to produce a robust compensator
without first being aware of the negative capacitance and then
using an appropriate higher order (in this case, first-order) model.

A simple way to characterize physically meaningful perturba-
tions in the plant is to look at their effect on plant trajectories for
various inputs and initial conditions. For example, in (6) an initial
condition x, = 1 yields x(f) = e~*¢ which converges on compact
subintervals of (0, o) as ¢ = 0%, but diverges as ¢ — 0~. Strictly
speaking, we are really not saying as much about perturbations of
(4) which can occur in the physical world as we are about those
perturbations which are consistent with the measurements taken
while formulating our plant model; a system model is good only if
it is capable of predicting the behavior of the actual physical
system.

We may now state our definition of asymptotic robustness more
precisely. For a given plant of the form (4), a compensator is
robust if all perturbations in both the plant and compensator,
which bring about only small variations in the trajectories of each
system individually under all inputs and initial conditions, result
in only small variations in the closed-loop system trajectories. The
meaning of the phrase small variations will be precisely defined in
Section III. In the same section we will see that our approach
implicitly incorporates the idea that small system variations
should correspond to only small changes in system parameters.

II. PRELIMINARIES
In this section we summarize the constructions of [10], [11],
[13], and [14] which are pertinent to subsequent developments.
Let

E(n, m, p)={(E, A, B, C) € R"¥+m+P)| |sE-A| # 0}
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and let £(n, m, p) be the corresponding quotient manifold (see
[18]) determined by the equivalence

(El: Alr Bl) C1)=(E2, Aly B2) C2) iff C'1=Cz and
3 nonsingular M s.t. ME,=E;, MA,=A,, and MB,=B,. (7)

(The arguments n, m, and p will be dropped when clear from
context.) We choose the equivalence relation (7) because pre-
multiplication by M has no significant effect on the system
representation. Indeed, premultiplication by M merely performs
elementary row operations on the system of scalar equations (7).
Hence, we are merely 1dent1fy1ng systems formed from each other
by reshuffling the equations. We do not wish to identify systems
which are related by a coordinate change on the state variable x,
since this would reduce the system space to one consisting of
input-output descriptions. Our intention is to produce results
which exploit internal information.

The equivalence class containing o = (E, A4, B, C) is denoted &
= [E, A, B, C]. In this case, we say o represents £. Let

r=ord o=ord £ =deg A

where A is the characteristic polynomial (5) of £, and note that a
unique matrix C is determined by each § € £. A sequence £, €
£ converges weakly to £ € £ (£, &) if & — ¢ in manifold
topology. Since &£ is a quotient manifold, the natural projection
(E, A, B, C) » [E, A, B, CJ is continuous with respect to weak
convergence. Conversely, we have shown in [10] that, for each
convergent sequence £ % £ in £, there exists a sequence (Ey, Ay,
B,,C) — (E, A, B,C) € Zsuchthat[E, A, B, C] = £ and [E},
Ay, Be, C) = &, for every k.

Let £, ™ £ = [E, A, B, C] with E singular. In [11] is shown
that there exist nonsingular matrix sequences M, — M and N, —

N such that
A 0
] » My ANy = [ ()Sk In-—r] @

where r = ord £, Ay = A, and Ay = Ay with A, nilpotent. For
sufficiently large &, the matrices Ay and Ay are unique up to a
similarity transformation. For a constant sequence, the decompo-
sition (8) reduces to the Weierstrass decomposition for matrix
pencils (see [17])

I, 0 A, 0
MEN = [0 Af] MAN = [ 0 I, ,] ©)]
The matrices M and N may also be used to decompose (4),
yielding

I, 0
MyEN,= [ 0 A

B
MB= [B;] , CN=[C; Cl.

Referring to [14], we say that (4) is slow controllable if and
only if

rank (NE—A Bl=n (10)
for every N € © and fast controllable if and only if
rank [E B]=n. an

The system is controllable if and only if both (10) and (11) hold.
In addition, we say that (4) is impulse controllable if and only if

Im A;+Ker Ag+Im By=Rn", (12)

(All four system properties can also be defined directly in terms of
the solutions of the differential equation (4), but we find the linear
algebraic characterizations more useful in the context of this
paper.) Controllability and observability imply impulse controlla-
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bility and impulse observability, respectively. The corresponding
definitions for observability are dual to (10), (11), and (12) (see
[14]). Since each of these definitions is invariant under the
equivalence transformation (7), we may also consider the subsets
Loor Loy Loy Lies L0y Loy Loy Lo C £ determined by (10),
(11), (12), and their duals, as well as the controllable and
observable systems £, = £, N £,. Various properties of these
spaces are studied in [13]; for example, £, and £, are open, and
£ and L, are dense in £.

Other important subsets of £ are the singular subspace £,
consisting of all points [E, A, B, C] with E singular, the regular
subspace £” = £ — £, and the subspace of unit index systems

£1={t € &£ |deg |SE~A|=rank E}.

In {10] it is shown that £ is open and dense in £; from [13], £,
N £5is dense in £,

Let D be the set of all C> functions ¢: ® — R with compact
support and let D, be the space of distributions with support in
[0, o) (see [19]). To define convergence in ., we adopt the
weak* topology: A sequence f;, € D, is said to converge to f if
{f, ¢) for every ¢ € D, where (f;, ¢) denotes the functional f;
evaluated at the point ¢.

Associated with each initial condition X, € R" and each
piecewise continuous input u there exists a unique solution ¥,
(¢0) € D" of the system £, (see [17]). From linearity it follows
that the solution can be decomposed into natural and forced
response

‘I,xou(sk) = \I’xoo(gk) + ¥ou(£e).

Letting
By | _ _ Xosk | _ ar-1
[Bfk] =M By, [Cy Cpl=CiNy, [ka] =N;"X
1290
o =N, 0u(8) (13)
[wﬁou(sk)] oo
we have from [17] that
V3 ulE) =exp (As)Xo+exp (Ag) * Byt (14)

where exp.(4) € 20'1r is defined by

exp (A)(t)=e"

and ““*”’ denotes convolution. Each ¥?*  satisfies several
properties of continuity. Indeed, convergence of Ay guarantees
uniform convergence of exp (Ay) on compact intervals and,
hence, weak* convergence. Continuity of convolution with
respect to both types of convergence assures that each sequence

Vi) converges weak* and uniformly on compact intervals
whenever £, * &. Furthermore, since ¥you (§) = ¥5,,(8) for &
€ £, ¥y, satisfies the same properties when restricted to £

To a1d in writing a general expression for \I/X «(&x), we note

that there exists a nonsingular matrix sequence T (not necessarily
convergent) such that

: Ag O
T,;'lAfkazl: ()fk A,fk:l

where Ay is nonsingular and Ay is nilpotent. Then from [17],
exp (A ;) 0
¥/ (&)=T 7

k
Xou O 2

exp (Af‘kl) * fif'k'Bfku
qr-1
-, AL Bpul
i=0

(15)

+ T (16)
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B
[ ~fk:| — T/:lek
Bfk

and &' and ' denote the ith distribution derivatives.

where

II. PROBLEM FORMULATION

We are now in a position to precisely state the basic problem
under consideration. For two reasons we are forced to select a
rather abstract mathematical framework for our constructions.
First, since perturbations leading to changes in order require the
use of systems of the form (4) and since such systems can have
impulsive solutions, the space ., of distributions and its
associated weak* topology underlie all analyses. Second, it will be
seen that in order to meaningfully incorporate the idea that small
system perturbations should lead to only small changes in the
entries of the matrices E, A, B, and C, it is necessary to identify
systems according to the equivalence relation (7). Hence, we must
work with the non-Euclidean system spaces £(n, m, p).

We consider the problem of compensating the plant model (4)
with a static system of the form

u=Ky+v an
where K is a matrix and v is an external input. Let ® = £(n, m,
p) and Q = R™, and note that the closed-loop system takes the
form

Ex=(A+BKC)x+Bv

C(, K): (18)

y=Cx.

In general, the system (18) may not exhibit existence and
uniqueness of solutions or may respond to certain initial condi-
tions with impulsive transients (see [15], [17]). Since we are only
interested in choosing a compensator such that the resulting
closed-loop system does not suffer from either of these defects,
we restrict attention to

®R={(¢, K) € ®xQ_|deg |sE—(A+BKC)|=rank E}. (19)
Adopting (19) is equivalent to assuming that (18) has unit index;
hence, we may set 3 = £,(n, m, p). Note that the loop-closing
map C is continuous with respect to manifold topology on £
(weak convergence); i.e., small changes in the entries of E, A, B,
C, and K bring about only small changes in the closed-loop
system matrices.

We say that a sequence £, in @ converges weakly to £ € @
&> §)if ¥ ,ou(€x) = ¥ypu(§) weak* for every xo and  and if C;
— C. On the other hand, we say that a sequence £ € J
converges strongly in J if cach ¥ ,,u(Ex) converges uniformly on
compact subintervals of (0, o) and C — Cj. Uniform conver-
gence of solutions is meaningful for systems in 3 = £, only
because unit index systems have no impulsive components in their
solutions (see [17]). We have shown in [10] that strong conver-
gence in @ implies weak convergence in ®.! It is easy to verify
that ‘strong convergence in J implies convergence of each
¥ ,u(£4) in the weak™ sense (see [19]); hence, strong convergence
implies weak convergence in 3 as well.

Although strong convergence of £, does not necessarily imply
that the entries of the system matrices Ep, Ay, B, and C;
converge regardless of the representation (4) of &, such a strict

! Actually, it is shown in [10] that convergence of ¥, u(€x) for every x,, u
guarantees convergence of £, in manifold topology when u ranges over DYk
is easy to show, however, that the same result holds when u is restricted to be
piecewise continuous.

1133

requirement would not be particularly meaningful, since premulti-
plication of (4) by any nonsingular matrix produces an entirely
equivalent representation. From [10] it does follow that strong
convergence of &, implies convergence of some representative
sequence (E;, Ay, By, C) € Z(n, m, p). We are therefore
justified in interpreting weak convergence in ®& and J as
convergence of system parameters and stating that a perturbation
of a system which yields oniy small changes in system trajectories
also results in only small variations in system parameters.

A plant-compensator pair (¢, K) € ® is asymptotlcally robust
(or K is a robust compensator for £) if C (&, Ki) > C(§, K) for
every xo, u whenever £, ¢ and K, — K. This is equivalent to
continuity of the loop-closing map € at (¢, K') with respect to
strong convergence in ® and J. It is routine to verify that our
definition of robustness can be couched in terms of topologies on
@, Q, and J simply by imposing on each set the weakest topology
that makes each map ¥, ot continuous (see [20]). Our main
problem of interest is to characterlze the class of all robust plant-
compensator pairs of (£, K) € ® for any given values of n, m,
and p. Equivalently, we seek to describe the class of all
compensators K which are robust with respect to a given plant
model £.

IV. THE CLASS OF ASYMPTOTICALLY ROBUST COMPENSATORS

We begin by presenting a result which formalizes the intuitive
idea that robustness can fail to hold only when the plant model @
is singular. Note that when (4) is regular (§ € £"), = R™.

Proposition 3.1: If £ € £", every K € R™ is robust

Proof: Choose K, X0 Uy and sequences K, — Kand £, §.
Then C, — C. Since £" is open in mamfold topology, e L"
for sufficiently large k. From [10], £, Eso contmmty of C with
respect to weak convergence implies C (¢, Ki) ™ C(£, K). Since

an Iy At ison L"and C(L" X Dmn\ C On wa hava
Uabll Yxou lb COTINuous O oo Akl U\ PIRAAR A A

Wgu(C (Eies Ki))=¥xqu(C (£, K)). -

Before starting our main result on robustness, we need to
consider one more algebraic system property of (4). We say that a
system (4) is fast cyclic if, in the Weierstrass decomposition (8),
the nilpotent matrix A, is cyclic. If A, is in Jordan form, fast
cyclicity is equivalent to

0

Hence, from (9), a system (4) is fast cyclic if and only if rank E =
n ~ 1. Note that fast cyclicity is independent of the choice of
representation for £.

In order to prove that a certain algebraic condition on the
compensator K is well defined, we next present a pair of lemmas.
It will eventually be proven that this condition is necessary and
sufficient for robustness.

Lemma 4.1: Let N and T be any n X n matrices with N
nilpotent and having index q. Then Ker N is N 9~ ! T-invariant.

Proof: Since N(N4~'T) = N9T = 0, Im N4~!T C Ker
N. Hence,

(N9-'T)Ker N C Ker N.
O

Note that, if N is cyclic, Ker N is one-dimensional.
Lemma 4.2: If ¢ € £°is fast cyclic, impulse controllable, and
impulse observable, and (A;, By, Cy) is obtained from the
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Weierstrass decomposition of any representation of £, then

AL+ B;KCy) |Ker A;>0 (20)

determines a nonempty open affine half-space in R™” which is
independent of the representation. (The vertical bar denotes the
restriction of the linear operator to the subspace Ker A4;.)

Proof: In view of Lemma 4.1, (20) is well-defined. For the
caser = n — 1, Ay = Oand

An=r=\(I+B;KC;)=1+B/KC;. @n

For r < n — 1, choose a nonsingular T so that T7-'A4,T is in
Jordan form. Letting

[ o]
: J =T-1B;, [ " Caufl=CfT @2)
Bur

we know from [14] that impulse controllability and impulse
observability guarantee b,_, # 0 and ¢, # 0. Also,

A;_r_l(l,,_,-FBfKCf)

_r [1;,,-,1@1 o by Ken_y_ 1+b,,-,1<c,,;),] -

Hence,

A}’"“‘(I,,_,+BfKCf) |Ker Ap=b,_.Ke;. (23)
Setting (21) and (23) positive determines nonempty open affine
half-spaces.

From [11], (A;, By, Cy) is unique up to similarity transforma-
tion for a given £. Clearly, similarity transformation does not alter
(21), so the resulting half-space is unchanged. To see how (23) is
affected by similarity transformation, note that (23) means

A;"“I(I,,_,+BfKCf)x==b,,_,Kclx
for any x € Ker A;. Let z = T-'x. Then
T-'A"""\(I,_,+B,KC) Tz=b,_,Ke\2

SO

(T ATy YTy + (T 'By)
* K(C;TH(T-! Ker Ap)=b,_,Kc,.

But 7-! Ker A; = Ker (T'AT) so the resulting half-space is

again unchanged. |
A final technical lemma is needed to prove our main robustness

theorem. .

Lemma 4.3: Letay; i = 0, - -+, u be convergent sequences in
Rwithaa,, # Oforevery k,andlet fix R R;i=1,--,» —
1; k£ = 1,2, - - be continuous at the origin and satisfy f;;,(0) =
0, where v > p. Then there exists a sequence ¢, in R such that for
each k:

D 0< el < Vk

2) sgn e = —SgN A,

3) the polynomial es* + f,_jxle)s'™t + -0+
Surrxle)s* 1 + (@ue + fulee))s* + -+ + (@i + firled)s +
ayy has at least one real root A, with A, > k.

Proof: Fix k, let o = ~1/j sgn a,;, and consider the
sequence (in j)

pi()=os? + f_ () s? L -
|'_/;, | |((¥j)S“+1 +(auk+f;‘k(aj))s}‘+ .ee

Flage VSogDs + agg (24
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From [12, Lemma 4.3], p; can be factored as
v=p
pi(s)=pi(s*+b, 1 js*  + -+ b)) [ (oys=1)  (25)
i=1

where each 0;; > O and ¢;, b;;; 1 = 0, -+, p — 1 all converge.
Equating the coefficients in (24) and (25) of s* and s* yieids

v—p
a=¢; [T o
i=1

Ayp= ( - I)V_” lim Pj.
For sufficiently large j it follows that

g
sgn H 0;/=1sgn a; sgn @;
i=1
= —sgn a,, sgn lim ¢;

o ( -1 ) r—p+l .
Hence, for each sufficiently large j there must exist an i such that

o € R, 0;;>0.

Since o;; — 0, there exists j > & such that 1/0;; > k. Set A\, = 1/
Ojj and € = O W]

Our main result, Theorem 4.4 completely characterizes the
robust static compensator gains K.

Theorem 4.4: Let § € L£°.

1) A robust K € RP™ exists iff £ is fast cyclic, impulse
controllable, and impulse observable.

2) Under the conditions of part 1), K is robust iff

A"\ (I+BKCy) [Ker A;>0. (26)

Proof:

1) (Necessary): Let r = ord £. We need only consider the case
r<n-—1,sincer = n — 1 implies ¢ is fast cyclic, impulse
controllable, and impulse observable (see [14]). Suppose r < n —
1 and choose a representation (E, A, B, C) for £. Invoke the
Weierstrass decomposition (9), select a similarity transformation
to put A, in Jordan form, use the notation (22), and let

'0, Y1

=T_1AfT. 27
L Yrn-r—1

0

(Bach v; is either 0 or 1.) If £ is not fast cyclic, impulse
controllable, or impulse observable, then either v; = 0 for some i,
b,_, = 0, or ¢; = 0 (see [14]). Choose nonzero sequences vy, —
Yis Bn-rg = bu—y, €1 = 1, and K — K such that

n-r-1
bu-riKiere [] vae<0 (28)
i=1
for every k, and define
b

By=T » Cre=[ewey +* €u-/JT7! (29

n—r—1

bn—nk
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X Yk
= L. -1
Ag(x)=T e | TR (30)
L ]
Now, we may uniquely define sequences aj; i = 0, --+, n — 1

and polynomials py; [ = 1, -
according to

yno— 1) with plk(o) =

XIS (@ g Pro 1k (XNSTT s (@1 Dr(X)) s+ aok

- SI— (As'l'BszCS)
- Bkasz

~ B Ky Cpi '
sAfk(x) —_ (I+ Bkakak)

By elementary matrix arguments,

n-r—1

@1k =(=0)""by_ i Keene [T v

i=1

(€2))

e

Letting fix(x) = pu(x¥"-7,» = n,and p = n — 1, we may
select a sequence ¢, satisfying the properties in Lemma 4.3 and

define
1
o= — <___> l/(n—r).
€k

Since ¢, = 0 and sgn e, = —sgn a,_; 4, (28) and (31) guarantee
that a; — + 0. If we set

|-In-r 0 -l
7 AN
=M-! 1 ~1 =
Ey=M [0 Aﬂ(___)JN,AkA
247

=M} [B ] =1C; Cx

By=M N (32)
[ Br]
we have
det (sE, —(Ax+ B K Cy))
=B(exs" +(py i+ Fuo1i(e))s" -
+ (a1 +S1{e))s +aor) (33)

for some constant 3. From Lemma 4.3, (33) has at least one real
root A, > k for every k. Since (33) is just the characteristic
polynomial of the closed-loop system C(£, K'), (15) shows that \;
must be an eigenvalue of the closed-loop A - for sufficiently large
k. Thus, exp (A7!) cannot converge umformly on compact
submtervals of (0, 00), since this would imply uniform conver-
gence of its eigenvalue exp (A\;). Letting # = 0, it follows from
(13) and (16) that ¥, ,(C(&,, K)) does not converge for every x,.

In order to prove tgat K is not robust, we have only left to show

that ¥, . (§x) — ¥, (£) in the weak* sense, where &, = [Ey, Ay,
B, C k? To do so, we note that

1\-! 1)\ -!
‘I’{(Ouk=exp (Afk <'—E;> )X()+Afk <—a;)
1\-!
cexp | Ap | —— * Bpu
273

1135

L
. ]

) Yn-r—1,k

)

-1 i -1
exp tAfk —'OTk

and

1
o2

= 2 .1. i_ .l_ e’/s
im0 itds's s=—1/ag
|' ;
" 'Yn —r—1,k Bfku
"o
Consider the matrix
1
-1
(e 42 *
= . 1

(273

A routine calculation shows that the (i,
(tZ;Yis

1 di-i (1
aijk (_ et/s)
(j——l“ dsi—i \; Jls

It was shown in the proof of [10, Theorem 4] that

J)th entry of 3! exp

18 - gn-re
T lexp(Z ) - -
&
1
Therefore, o, = —8/~/ for each j = i, and ¥/  — ¥/ for

any xyu. It follows from (13), weak* continuity o convofutlon
and continuity of ‘If o, that ¥ (&) = ¥, 0. (8).
(Sufficient): Let Ek be any sequence in £ such that ¥, ,(¢;) =
V¥, ,u(£) for every xou and with C, = C. Then, from [10] (¢
and the decomposition (8) may be invoked. It follows that

| M| |SEx— Axl | Ni| = sl — Ag| |sAp—1,_,|

for any convergent representation (E,, A,, By, Ci). Suppose
(—=1)""|Az| < 0 for infinitely many k. Since | A | is just the
product of the eigenvalues of A fks there exists a subsequence of
Ay with at least one real, positive eigenvalue for each k;. It
follows that A7 fk has an eigenvalue \; = oo. Let u = 0 ‘and
observe that

<‘I,£0u(£kj)’ ¢> = I‘ijojkj
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where

Ty={. o(0etd ) a.

A function ¢ € D can always be chosen such that an eigenvalue
of I'x ; satisfies

S: exp (v 1)(1) di— oo,

Hence, ||Ty;|| — oo. It follows that I'yxop is unbounded for
an appropriate choice of X, and that \p£ (¢4) and [from (13)]
. Qu T,
¥,.,u(Ex) are not convergent. This contradiction leads us to
conclude that (—1)"~"|4x| = O for sufficiently large k.
Appealing to the notation of (22) and (27), we have b,_,, ¢; #
Oand,ifr<n -1,y =+ = vy,.,.; = 1. Choose X to
satisfy the condition (26). For r = n — 1, (21) indicates that 1 +
b Ke; > 0; for r < n — 1, (23) implies that b,_,Kc; > 0.
Defining

Ar(8)=|SEx— (Ax+ By K Cp)|
we have

| Mic| A ()| Nie|

_{8h— (Agc+ By Ky Cor) — B K Cpi
— By Ky Co SAp— -+ B K Cp)

=|Ap|s"+ (x— | Ape| tr(Ask + Ba K Ct))s" '+ - - -
€0
where «y is defined by
|sAp—n-r+BuKiCp)| = | Ap| ST aps™ =14 -+ -,
From elementary matrix arguments we have, forr < n — 1,
|sAy=Iy—r+ BKC)| = (= 1)"""b,_ Keysn= =14 - - -
o

ifn-r=1

ifn—-r>1. 33)

. _ ”‘(1+b1KC1)
fim o= {(—1)"-'b,,_,1<c1

From our choice of X it follows that the closed-loop system C(£,
K) exhibits no impulsive behavior in its natural response, i.e.,
ord C(¢, K) = rank E = n — 1. Hence, from [12, Lemma 4.3)
we know that

n—1

| M| AN = Geores = 1) T T (s=Na) (36)
i=1
where ¢, gy, and N, all converge and lim o, = 0. Matching
coefficients in (34) and (36) yields
erox=|Ap| (37
lim o= —lim ¢. (38)

From (35) and our choice of K, (—1)"~7 lim o < 0. Hence,
from (38),

(- D" lim gp=(—1)"""*1 lim oy, <0.

Thus, ¢ - 1" " <0 0 for sufficiently large k, and

Cont AL
( 1" ey

0,

i,
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Applying the decomposition (8) to the closed-loop system yields
nonsingular transformations M, and N, such that

b 0] s Mi(Ax+ B K C )Ny = [Ask 0]
Oy 0 1

MkEkAk= [ 0

_ B _ o
M B,= [E;:] s CulNe=[Cq Cpl

where all sequences converge. The decomposition (13) may also
be applied to the closed-loop system yielding

[,
mer- 32063 ]

From Lemma 4.3, \T’iou(fk)‘ ~ ¥ (£), and

1 1 1 _
exp <——> Xofx+— exp (-—) * Byu if 0, <0
3/ O O Ok
¥/ (k)=

—-B/ku

so, as in the necessity proof of part 1), \I/{( JED) \H (E) for
any xo, u. Hence, ¥,,(C(£,)) — \Ifxou((‘B(oE)) and K is robust.
2) (Sufficient): This part has already been treated in the
Sufficiency section of 1).
(Necessary): Invoke the Weierstrass decomposition (9). If (26)
failsandr = n — 1, wehave 1 + B,KC; < 0so B, # 0and C;
# 0; hence, there exists a sequence K, — K such that

1+ B/K,Cr<0 (39

for every k. Now define ay, s Buoik

according to

Yt an—l,k; ﬁlka .

X"+ (@1, + Bro1,6X)S" <+ F (@1 BriX)Ss +dox

- SI,,_I—(AS'FBszCS) '—BszCf
—'BkaCs XS"(I'*‘B/Kka) ’
Then
An 1, k= -1 +BkaCf). (40)

Letting fi,(x) = Biwx, we can find a sequence ¢, satisfying the

properties in Lemma 4.3; define «,, = — 1/¢;. Since ¢, = 0 and
Sgn €x = —SEN d,_1 4, (39) and (40) guarantee that oy = + oo, If
we set
L.y O
E,=M"! 1 N-1, Ay=A
0 ——
271
Bk=B, Ck=C

we have that det (sE;, — (A; + BK,C})) has at least one real
root N, > k for each k. As in the sufficiency proof of part 1),
¥, u(C (&, Ki)) does not converge for some xo, u. Since

‘I’ﬁo,‘(Ek)=€Xp (— )Xo~ o exp (— o) * Bpeu @“n
in the open-loop system, ¥, ,(£) — ¥, u(§) and K is not
robust.

If (26) fails and » < n — 1, we may adopt the notation (29) and
(30) and observe that b,_,Kc¢; < 0. Since fast cyclicity, impulse
controllability, and impulse observability guarantee that b,_, # 0
and ¢, # 0, a sequence K, — K may be chosen so that b, . K,
< O for every K. The remaining arguments are the same as in the
necessity part of 1) with b,_,., = b,_,, c;x = €1, and y;, = 1.0J

Theorem 4.4 is somewhat pessimistic in that, in the strictest
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theoretical sense, robustness can only be guaranteed when at most
one degree of singularity is present in the plant (4) (rank E = n —
1). In physical terms this can be interpreted as meaning that a
static compensator can handle only a first-order unmodeled
dynamic element. In our opinion, this indicates that some basic
assumptions which are as yet not well understood are convention-
ally placed on system models in engineering practice.

For a mathematical explanation of how nonrobust compensa-
tors may fail to stabilize a system, consider the matrix condition in
part 2) of Theorem 4.4. This condition determines an open affine
half-space in the set R™” of compensation gains K. Examination
of the proof of Theorem 4.4 reveals that, for systems which are
fast cyclic, impulse controllable, and impulse observable, a static
compensator results in positive feedback either for all admissible
perturbations simultaneously or for none at all. The half-space of
robust feedback gains is simply the set of all K with the
appropriate sign to guarantee. negative feedback for all perturba-
tions of the system (4). The system (6) illustrates this point. The
robust gains are simply those satisfying X < 1. On the other
hand, part 1) of Theorem 4.4 maintains that unless the plant is fast
cyclic, impulse controllable, and impulse observable, the class of
admissible perturbations is so broad that any compensator results
in positive feedback with respect to some perturbation; hence, no
compensator is robust. This'is illustrated by (2) and (3).

Another important point to note at this stage is that, although all
definitions and technical arguments until now have been couched
in terms of sequences, each statement applies equally well to nets
in the various topological spaces. This observation is important,
since the space of distributions D, does not satisfy the first axiom
of countability (see [20]).

To conclude this section we compare our results to those of [5].
Specifically, [5, Theorem 1] shows that, for any system

x=Ax+ Bu

y=Cx (42)
and any compensation matrix K, there exists a singular perturba-
tion of (42) of the form (1) which destabilizes the closed-loop
system. (The result of [5] is somewhat more general in that it
applies to all dynamic compensators which are proper but not
strictly proper.) According to Theorem 4.4, if we take such a
perturbation and set ¢ = 0, we obtain a nominal system

I, 01 . | Au An B,
[ o) s ][]
y={C Glx 43)
which must either fail to be fast cyclic, impulse controllable, or
impulse observable. For example, setting e = 0 in (3) yields a
system of the form (43) which can be shown to be not fast cyclic.
While the result of [5] illustrates that a specialized class of
parasitics can lead to closed-loop destabilization, our results
characterize the same phenomenon but in the context of a broader
class of perturbations and a larger family of nominal systems. For
example, our Theorem 4.4 applies to systems of the form (43)
with A, singular (as long as |sE — 4| # 0 is satisfied), while [5]
considers only the case of A,, nonsingular. Our result also shows
when destabilization can occur as a result of perturbations to a
given order; the perturbed order required to destabilize the closed-
loop system in {5] is not specified.

V. GENERICITY

We now consider the class of systems (4) for which there exists
a robust compensator K. The sets of impulse controllable and
impulse observable systems were shown in [13] to be dense in the
system space £. The next result characterizes those systerns
which are also fast cyclic.
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Proposition:

1) £isfastcycliciff ¢ € £ U L1

(LU LY N L, N L, is open in L.

3) £ N L, N L, is dense in £,

Proof:

1) Let (£, A, B, C) be any representative of £. If r = ord £,
the Weierstrass decomposition (9) shows that rank E = r + rank
Ay. But £ is fast cyclic if and only if either r = norrank 4, = n
— r — 1. Hence, £ is fast cycliciffrank £ = norrank E = n —
1.

2) Let

£=[E,A,B,C] € 0=(L"U £ N £, N L

and apply the decomposition (9). Then A4 is cyclic, and Ker A, C
Im Ay. Since £ is impulse controllable and impulse observable.

Im Ay+1Im By=Im As+Ker Ag+1Im By=R"~"
Ker Ay N Ker Cy=Ker A, N Im A, N Ker Cy=0
so & € L N Ly, (see [14]). It follows that
Q=(L"N L HN L, U L.

We know from [13] that £,. and £/, are both open, so & is the
finite intersection of open sets.

3) It was shown in [13] that £, N £"-! is dense in £5. Our
result follows immediately, since £;c N £;, O L. I

Note that part 3) is stated in terms of the singular subspace £°.
Since every point in the regular subspace £" is necessarily fast
cyclic, impulse controllable, and impulse observable (see [14])
and since £”is dense in £, density of (£L" U £ N L,. N £,
in £ is trivial. Part 3) is a much stronger result.

V1. DiscussioN AND CONCLUSIONS

In this section we discuss some of the implications of our theory
and use these to suggest further research. Theorem 4.5 shows that
a generic class of systems can be robustly compensated using
static compensators K. This does not mean, however, that the
complement of the open and dense subset (£ U £~ N £, N
&£, does not contain interesting systems. On the contrary, it is
easy to show that all systems of the form (4) withr < n — 1 and
A, nonsingular lie outside the generic class described by
Theorem 4.5. Another interesting observation is that even a
system which does lie in the generic set can be trivially augmented
so that it sits outside the generic set in a higher dimensional system
space. For example, the dimension of (4) may be increased simply
by defining a new (scalar-valued) state variabie z = 0 and noting

I -
y=(C 0] H .

System (44) is a member of £(n + 1, m, p). It is easy to show
that (44) is not fast cyclic and, hence, cannot be robustly
compensated. The latter point can be countered by arguing that
only variables of interest should be included in a well-devised
state-space model; therefore, the variable z would never be
present.

There are at least a couple of avenues of research which might
eventually resolve these issues. Dynamic compensation is still
relatively unexplored in the context of singular perturbations. One
promising result is [5, Theorem 2] which suggests that, when
parasitics are present, strictly proper compensators are more
robust than nonstrictly proper ones. Since [5] treats only the single
time-scale case, more work needs to be done to see whether this

(44)
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result stands up to a larger class of perturbations. As pointed out
in Section I, the issue of which class of perturbations is
meaningful in a given system analysis is of fundamental impor-
tance. Our main results can in fact be proven under a somewhat
more general definition of system perturbation than the one
provided here (strong convergence). However, preliminary work
suggests that even such a generalization might be too restrictive to
allow a coherent robustness theory to be developed. We intend to
explore these issues more fully in the future.
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