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Technical Notes and Correspondence

Robust Stablization Relative to the Unweighted /1
Norm Is Generically Unattainable in the Presence
of Singular Plant Perturbations

J. DANIEL COBB

Abstract—Recent work by Vidyasagar gives a sufficient condition
under which a singularly perturbed system can be robustly stabilized
relative to the unweighted //= norm. In this note we show that the same
condition is also necessary. In addition, we prove that this condition is
generically untrue with respect to the class of all linear singularly
perturbed systems, as well as the class of all singular perturbations of any
fixed, stabilizable, and detectable system.

I. INTRODUCTION

Considerable research has been devoted recently to the idea of using the
H= norm as a measurc of closed-loop system performance (e.g., sec [1]).
An important contribution to this body of work has been that of
Vidyasagar [2], [3] where the ‘‘graph topology”’ is introduced. Roughly
speaking, the graph topology is the weakest topology such that every
system has a stabilizing compensator, which makes closed-loop system
performance (measured by the AH* norm) insensitive to small plant
perturbations. We are particularly interested in deviations from the plant
model which give rise to an increase in model order. Such perturbations
are often called singular and are typically a consequence of unmodeled
parasitic phenomena (see [51]).

Consider the linear, time-invariant, two-time-scale, singularly per-

turbed system
I 0 N Ay Aq Y+ B, u
0 B Az) A22 32
y=1CiClx+Dyu (¢)}

where the matrices Ay, B;, Ci,.and Dy are independent of €, and A,, is
Hurwitz. Contained in [2] and [3] are results related to the problem of
robustly compensating (1). One such result is that the system (1)
converges in the graph topology as e~ 0+ whenever

CysI-A)"'B, = 0 2)

(see 2, Theorem 6.1] and [3, Proposition 7.2.62]). If this condition is
met, any stabilizing compensator (in the input-output sense) for (1) at e =
0 must also stabilize (1) for sufficiently small ¢, and the corresponding
closed-loop transfer matrix must converge in H* as ¢ — 0*. In Section II
we prove that this sufficient condition is also necessary. In Section IIf we
show that the class of all systems (1) which satisfy (2) is, in a natural
sense, the complement of a generic set, and that singular perturbations of
any fixed, stabilizable, detectable system (4, B, C, D) generically do not
satisfy (2). Hence, we conclude that closed-loop performance of almost
any feedback system is highly sensitive to singular perturbations, if the
unweighted > norm is adopted as the performance measure.

I. A NECESSARY CONDITION FOR ROBUST STABILIZABILITY

In this section we prove that (2) is not only sufficient but also necessary
for robust stabilizability.
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Theorem 1. Let P(s) be the transfer matrix of (1) for every ¢z 0, and
fct the triple (4, B, C) be stabilizable and detectable, where 4 = Ay -
ApA 2—2|/421, B =B - AjpA 2_2le, and C = Cy} - A 2—25‘12]. Then P,
= P, in the graph topology as e — 0+ if and only if C; (sI — Ayp)
“iB,= 0.

Proof:

(Sufficient): See [2] or [3].

(Necessary): Suppose P, — Py, and let F be any matrix that makes
A — FC Hurwitz. Using the notation of [2], define

Do(s)=I~C(sI~A +FC)-'F
Ny(s)=C(sI—A+FC)-(B-FD)+D
where D = Dy — C3A;,'B,, and let
D(s)=1-Cy(sI-A) 'F,
N.(s)=Co(sI-A) (B~ FoDy)+ D,
where
Ay—-FC, Ap-FC,

1 1 !
= Ay ~ Ay
€ €

G=1CCi, Fy= [ﬁ] .

By [2, Lemma 6.1}, (D,, N.) is a left-coprime factorization of P, for every
€ = 0. According to [3, Lemma 7.2.20, part (ii), and Theorem 4.1.43),
there exist unitary rational matrices {U/| ¢ > 0} (not necessarily
convergent) such that U, N, » Njand U, D, = D, with respect to the H>
norm. (In this context, a unitary matrix is one whose determinant has
relative degree zero and has all poles and zeros in the open left half
complex plane.) Thus,

B,

/L: Be=

1
- B,
€

U.(ia/e) N, (ice/€) — No(io/ €)= 0 3)
U.(iase) D (ia/e)— Dylice/e)—0 @
ase —* 0% forevery ¢ R — {0}. We have

D,(ia/ey=1-¢[C,C,)

. I.O(I“G(A”—FCO
_‘AIZ

—e(A~FCy) -1 F -7
iOlI"AZZ 0

Do(ia/e)=I—eC(iad —e(A —~FC))~1F— 1.

and

Hence, from (3), U, (ja/¢) — I. Next, observe that

iOlI*G(A” -—FC.)

—€e(A;-FCy) -1
— Ay

N.(ia/e)=|C,Cy] l: ol ~Ap

. €(B,-FDy)
B,

:I +Dl_’CZ(iC¥I"A22)~le+D]

and

Nyia/e) = eClial —e(A - FC))""(B-FD)+ D= D,
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From (4) and the fact that U (ia/€) — I,

Cyliad — A)~'B,+ CoA 5, B, =0 (5)

for every a ¢ R — {0}.
We claim that the second term in (5) vanishes. Indeed,

B 1 1 -1 .
G4 ' By= lim <E C, <i1-;An> B+ CyA 22'132>

= lim (Cy(ial~An)™'By+ Cid ;' By)

so from (5) we have C, A 2*2'32 = 0. It therefore follows that Cy(s! —
Ay)~'B; = 0 for infinitely many s and, hence, for all s ¢ ©. L1

At this stage, a few comments are in order. Although detectability of
(4, B, C) was used in the proof of Theorem 1 in assuming the existence of
a stabilizing matrix F, stabilizability of (4, B, C) was not used. In fact,
examination of the sufficiency proof of Theorem 1 from [2] or [3] reveals
that all arguments could equally well be carried out by assuming only
stabilizability and relying on right-coprime factorizations. The same holds
true for our necessity proof. This weakening of assumptions is probably
of limited interest, however, since any system which is not both
stabilizable and detectable cannot be internally stabilized by any
compensator.

As pointed out in [2] and [3], the majority of results surrounding the
graph topology do not rely on any propertics indigenous to the //* norm
except that the H> norm should make the ring of proper, stable rational
functions a topological ring with i) the set of units open and ii) inversion a
continuous operation on the set of units. Thus, the graph topology is
actually a family of topologies, each corresponding to a different notion of
robustness. The singular perturbation result we have addressed in
beyond i) and ii) (see [3, p. 257]). Hence, it is not known whether either
the necessary or sufficient part of Theorem 1 generalizes to other
robustness measures.

III. GENERICITY OF UNDESIRABLE PERTURBATIONS

In this section we explore the implications of Theorem 1 to the problem
of robust compensation under parasitic uncertainty. In particular, we seck
to understand just how large a class of plant perturbations is taken into
account by condition (2). An easy result may be obtained by viewing the

4-tuple
_ An A B,
E—([:AZ, A”:I ) I:BZ:I » [CiGy], D|>

as a point in [R*(+m+”+pm_ Since (2) determines finitely many nonzero
polynomials on {R"""*+m+2+pm the set of all ¢ satisfying (2) is a proper
algebraic variety. Consider the class of all singularly perturbed systems %
= {£| Ay is Hurwitz}. It is apparent that the class of singularly perturbed
systems which do not converge in the graph topology is open and dense in
the open set Z. The class of convergent singularly perturbed systems is
nowhere dense and has vanishing Lebesgue measure (see [6]).

A more interesting—and perhaps more convincing—result involves
singular perturbations of a single given system. Suppose we wish to
design a compensator based on a fixed plant model (4, B, C, D) which is
stabilizable and detectable. Any good compensator should be robust with
respect to a reasonably defined class of parasitics. For our analysis, we
take this to mean all systems of the form (1) which reduce to the given
model when e = 0. That is, we consider all singularly perturbed systems
(1) with

An—ApA ;ZIA21=A, B,—-A,A Z-z'BZ:B

Ci~CA L, Ay=C, D\—CA,'B=D (6)

(and, of course, A Hurwitz). Equations (6) determine a proper variety in
{Rer+m+p)+pm which we denote by V. Let W be the variety determined by
(2), and let V' N I inherit relative topology from [R~(+m+p)+pm

Theorem 2: V N % — W is open and dense in V' N X.
Proof:LetEe VO S withé & W. Since W is a variety, there exists
a neighborhood U of £ such that U W W = ¢. U N V N X is a relative
neighborhood of ¢ which does not intersect W, and ¥ N ¥ — W is open.
To show density, let £ be any point in ¥ N £ N W and choose a
sequence (A, By Cxy) = (Ay, By, Cy) such that (2) is violated for
every k. Such a sequence must exist, since (2) determines a proper variety
in[R9@+m+P (A, is g X q.) Let A, and A, remain constant, and define

App=A+AA ;ZLAzl, Biy=B+ApA,,

By

|
22k

Cii=C+ CuA jyAsi, Digs= D+ CouA 4y Bay.
This determines a sequence £, — ¢ with £, & Wand & € V N 2 for
sufficiently large k. O

The results of [2] and [3] indicate that perturbations of a plant model
which are not small in the graph topology lead either to instability in the
closed-loop system, for arbitrarily small €, or to discontinuity in H*®
performance at e = 0, regardless of what compensator is chosen. Hence,
Theorem 2 shows that, in a generic sense, closed loop performance of any
feedback system is highly sensitive to singular perturbations, if the H>
norm is adopted as the performance measure. It is important to note,
however, that our results apply only to the unweighted H*= norm.
Examination of the proof of Theorem 1 reveals that difficulties can arise
only in the high-frequency behavior of the closed-loop system. Our results
suggest that, in order to guarantee compensator robustness, one would
have to formulate the design problem with relatively little emphasis placed
on high-frequency performance. This could only be implemented by
choosing a weighting function which rolls off in an appropriate manner at
high frequency. On the other hand, high-frequency rolloff is only a
necessary condition on the weighting function; more work is required to
properties required to guarantee robustness.

Another important observation follows from the results of {4]. Suppose
a stabilizing compensator is chosen having a strictly proper transfer
function matrix. Then [4] indicates that sufficiently small singular
perturbations of the plant can never destabilize the closed-loop configura-
tion. Since (1) does not converge in the graph topology, we must conclude
from [2] that the closed-loop system exhibits a discontinuity in H*
performance at € = 0. Hence, strictly proper compensators lead to
discontinuous H* performance as a function of e, while nonstrictly proper
compensators lead to either instability or discontinuous H* performance.

It is our contention that any good compensator design must be robust
with respect to a large class of parasitic uncertainties. The precise class
which nceds to be considered in practice is still a highly controversial
issue. We fecl that the results of this paper focus in on what might be
considered a ‘‘minimal’’ class. Systems of the form (1) have been
extensively studied over the past 25 years by countless researchers (see
[S]). This fact is partly due to the tractability of problems associated with
(1), but primarily relates to the fact that (1) has been shown to accurately
describe a wide variety. of physical processes. Surely, any perturbational
analysis of a given plant model should include all the perturbations
described in Theorem 2. In fact, one would probably be more correct in
considering a much broader class of perturbations, such as those
characterized by multiple time scales, perturbations in the matrices A,
B;, -+ -, small nonlinearities, etc. It seems unlikely, however, that such a
generalized approach would do anything but strengthen our genericity
result.
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