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On the Topology of Spaces of Controllable and
Observable Systems

J. DANIEL COBB

Abstract—Topological properties of classes of state-space systems (A4,
B, C) € R*®+m+P) gre considered, using the natural Euclidean topology.
In particular, the connected components of the spaces of controllable,
observable, and controllable and observable systems are characterized.
Similar results are then easily established for corresponding spaces of
rational transfer matrices.

INTRODUCTION

In this note we examine certain topological properties of important
subsets of the space R""*™+2 of linear systems (A4, B, C), using the
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natural Euclidean topology. In particular, we are interested in the sets £,
Z,, and X, of controllable, observable, and controllable and observable
systems, respectively. It was first shown in [1] that 2, Z,, and Z,, are
open and dense in R"("+m+P) (see also [2]). Another natural question to
ask is that of how many connected components comprise each set.

The issue of connectedness was shown in [3] to be fundamental to
identification theory, although the results of [3] apply more directly to
spaces of transfer functions, not (4, B, O) triples. Specifically, it is
shown in [3] that the space rat (n) of strictly proper scalar transfer
functions of degree 7 has # + 1 connected components. A strictly proper
transfer function JC of degree n is one which can be expressed as

n |S"_|+"'+bo

sc(s)_s"+a SNt ag

where numerator and denominator are coprime. The n + 1 components
of rat (n) are determined by the n + 1 possible values of the Cauchy index
9(3C), defined as the number of jumps of JC(0) from — oo to + co minus
the number of jumps from + o to — o0 as ¢ € R varies from — o to + oo
(see [4]). By considering the topology of systems (A4, B, C), we will be
able to easily extend the results of [3] to the multivariable case.

We refer to the multivariable generalization of rat (n) as rat (n, m, p),
i.e., the space of all p X m strictly proper rational matrices JC with
degree n. Here, the degree of JC is defined to be the degree of the least
comumon denominator of all minors of JC; the least common denominator
is called the characteristic polynomial of 3C (see [S]). The obvious

topology to use on rat (n, m, p) is the one obtained by viewing

¥(S)=
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as an element of R?0" +1, where by, * * *, b, now are p X m matrices
and 8" + a,_1s"~' + +++ + @, is the characteristic polynomial of 3C; in
this sense, each transfer matrix 3C has a unique representation of the form
(1). Convergence in rat (n, m, p) thus corrésponds to convergence of
every a; and b; sequence. Note that the map (4, B, C) — JC is continuous
on X, since

3e(S)= C(adj (sI-A))B.

1
det (sI—A)

Corresponding to each triple (4, B, C) € R"™+m+p) are jts
controllability matrix U and observability matrix V. We will see that
9(3C) along with sgn det U and sgn det V, if U or V'is square, completely
determines the connected components of Z,, Z,, and Z,.

Finally, let GL(n, R) be the general linear group of all nonsingular.n
X n real matrices. As a starting point for our work, we cite [6] where it is
shown that GL (n, R) consists of two components, determined by sgn det

).
MAIN RESULTS

We can immediately state and prove our main results, These will be
followed by an easy corollary which describes the topology of rat (n, m,
p) wheneitherm > lorp > 1.

Theorem: 1) If m = p .= 1, T (respectively, Z,) has.two connected
components, determined by sgn det U (respectively;. sgn det V)

D Ifm = p = 1, Z, has 2(n + 1) connected components determined
by the pair (sgn det U, 9(3C)) or, eqmvalently, by (sgn det ¥V, 9(3C)).

3)If m = 1and p > 1, X, and 2, each have two connected
components, determined by sgn det U; Z; is connected.

HIfm > land p = 1, 2, and I, each have two connected
components, determined by sgn det V; Z. is connected.

5Ifm>landp > 1, X, Z,, and I, are-each connected.

Proof: 1) Since (A, B, C) — det U is continuous with range R —
{0}, sgn det U determines two disjoint open subsets W, U W, = X Itis
casily verified that the map (4, B, C) = (S"'4S, S~!'B, CS) is a
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homeomorphism from W) onto W), where

-1
S= 1'..
1
Let
01 0
A=l . al B=(:). @
-l ;

We need only show that the subset containing (A, B, 0), say W, is
connected. This we will do by constructing a finite sequence of continuous
paths joining any given (4,, By, C)) € W, to (4, B, 0).

Choose a nonsingular 7 that takes (A4,, B, .C)) via similarity
transformation into controllable canonic form (see [5]), and define

01
Ay=T'A\ Ty =
¢ 1
—dp * ol
0
B,=T;'B;= (:), Co=CTi=[cp *** Cp-il. 3)
1
We have U; = T,“Uz where U; and U, are the corresponding

controllability matrices. Since (4, B, C)) and (A4, B, 0) are both in W},
it follows from (2) and (3) that det U, and det U, have the same sign. But
U, = Tl‘1 Ui, sodet Ty > 0. From [6, p. 131], we know that there exists
a continuous curve T [0, 1] ~ GL(n, R) joining I and T. Thus, o —
(T(2) ' AT(x), T(cx) "' B, CT(c)) describes a continuous curve in I,
starting at (4,, By, C)) and terminating at (4,, B,, C,).

Next, define (F, G, H): [0, 1] = X, by

0 1

F(a)= .
0 1
(@—Da -+ * (@—1)a,-,

G(a)=B H@)=(1-a)C;.

Then (F, G, H) continuously connects (4,, B,, C;) with (4, B, 0).

Observability can be handled by analogous reasoning using observable
canonic form.

2) Reasoning as in 1), it is easy to see that W, N X, and W, N £, are
homeomorphic. We need to show that W, N X, has n + 1 components,
determined by 9(3C). Again arguing as in 1), (4,, By, C;) can be
continuously joined to some (A,, B, Cy) in controllable canonic form.
The set of all controllable canonic from systems is a linear variety £, C
R+, Furthermore, 2, N Z. is homeomorphic to rat (n) since the
coefficients of JC;(s) = Cy(sI — A;) !B, are just the variable entries of
A, and C,. We know from [3] that rat (n) has n + 1 components,
determined by 9(3C), so it remains to show that two points (F, Gy, H,)
and (F;, G, H3) in Z,, N I, cannot be joined by a continuous path in
Zeo if I(3C)) # 9(3Cy).

Suppose the converse is true. Then there exists a continuous (F, G,
H): [0, 1] = X, connecting the two points. We know that (4, B, C) -
JC is continuous so o ~+ H(a)(sI — G(«)) ~!' F(«) is also continuous and
connects JC; and 3C,. But this is impossible, since JC, and JC, lie in
different components of rat (n).

By using observable canonic form, the analogous proof can be
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constructed using V instead of U. Hence, sgn det V' may be substituted for
sgn det U.

3) With regard to I, all arguments are identical to those in 1), except
that

C=[co *** Cu-1}

with each ¢; € RP. To prove the result for Z.,, we first observe that, as in
1), W, N 3., and W, N I, are disjoint homeomorphic open sets whose
union equals X,,. To show that W; N X, is connected, we recall that
Rnm+1+p) ig locally connected so any given (A4;, B, C)) € W; N I, has
a connected neighborhood W3 C W) N Z,,. Since the set of all (4, B, C)
which are observable through each output is dense in R"®*!+), there
exists a continuous path connecting (4,, By, C;) with some system (4,,
B,, C)) € W, N X, which is observable through each output.

Choose a matrix T; with det 7, > 0 which takes (4, By, C;) into a
controllable canonic form system (43, B;, Cj), and construct a corres-
ponding continuous path. The parametrization (F,, Gy, H\): [0, 1] = Z,,
defined by

Fi(a)=A4;, G(a)=5;

at+(l-a) cu(l—a)ey == (1~a)c,_
(1 -a)ep

H.(a)=' :
(l—a)Co_,,_] (1_a)cn—l.n—-l

Cop Cn-1,p

takes (A4;, B;, C) into (A;, By, C,) where

l 0...0
0...0

Co=|: :
0 o...o

Cop *** cn—l,p

Finally, we may construct a continuous path (F,, G,, H5): [0, 1] = Z,,
according to

10 - 0
0 0 - 0
Gy@)=B;, Hy(o)= L :
0 0 s o

(I—-a)cp, -+ (1 —a)Cy_1,p

which joins (4;, By, Cy) with (4, B, C) where

1 00
oo |0 00
0 0---0

Since (4,, B;, C)) was arbitrary, W, N I, is connected.

To see connectedness of ,, observe that ¥, is open and I, is dense in
Z,, so there exists a connected neighborhood of any given (4,, B;, C)) €
2, containing a point in X.,. Thus, we need only show that W; N X, and
W, N Z,, can be joined by a continuous path through %,. Consider the
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parametrization (F, G, H): [0, 1] = Z, defined by

F(o)=
1
0
1000
0 01 0--0
Ge=|il, H@=[0 0 0:-0|
! 00 00

It is straightforward to check that (F(a), G(a), H(a)) € I, and that det
U(0) and det V(1) have opposite sign where U(0) and U(l) are the
controllability matrices for « = 0 and a = 1, respectively.

4) All arguments are dual to those in 3).

5) Since R™n+m+P) js locally connected and X, is dense in both T, and
20, We only need to demonstrate connectedness of Z,. Also, the class of
(A, B, C) with A4 cyclic is dense in 2, s0 we may begin by choosing (4,
By, C)) € I, controllable and observable through each input and output
and with A, cyclic. Transforming to canonical form yields (A4,, B;, C,)
where

0 by bym
B,= 0 : :
1 bpy e bpm

Arguing as in 3) demonstrates that any system can be continuously joined
to one of the form (A, B, C) where now

0 00
B=l6 6...0|"
1 0«0

Corollary: Ifm > 1 or p > 1, rat (n, m, p) is connected.

Proof: The map (4, B, C) — 3C defined from X, onto rat (n, m, p)
is continuous, so, if both m > 1 and p > 1, the result is obvious. The
cases where either m = 1 or p = 1 are dual, so we need only treat m =
1, p > 1. Here the two components of £, are determined by sgn det U.
Suppose JC(s) = C(sI — A)~'Bis given by (4, B, C) and satisfies det
U < 0. Letting '

we may define (4, B, C) = (S-1AS, S~1B, CS). Then 3¢(s) = C(s/
— A)-'Bbut U = §-'Usodet U > 0. Hence, any JC can be realized
by some (4, B, C) with det.U > 0. Therefore, rat (n, m, p) is the
continuous image of a connected set and is itself connected.

CONCLUDING REMARKS

Although fundamental to various branches of control theory, an
understanding of further topological properties of the sets of controllable
and observable systems was originally necessitated by our investigation
into the nature of singular system representations (see [7]). We intend to
show in a future publication that the ciass of controilabie and observabie
systems can become a connected set when singular systems are brought
into the picture, even if m = p = 1. It is our contention that for this
reason, as well as many others, the space of regular and singular systems
should be viewed as a natural ‘‘completion’ of the set of state-space
systems.
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