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Controllability, Observability, and Duality in
Singular Systems

DANIEL COBB, MEMBER, IEEE

Abstract—The concepts of controllability and observability for systems
of the form EX = Ax + Bu, y = Cx, E singular are considered. A theory
is presented which unifies the three main approsaches to this topic already
existing in the literature. The development includes a generalization of the
duality theorem from state-space theory.

I. INTRODUCTION

ECENT papers by numerous researchers [1]-[4], [7], [8], [11],

[12], [14] have sought to generalize many of the elementary
concepts of linear system theory to the realm of singular linear time-
invariant systems:

9 Ex=Ax+Bu
o—ox

Here E, A:R" — R", B:R™ — R", C:R" - R* are linear maps
with F singular and

|Es—A| 0. @

We are mainly interested in the concepts of controllability and
observability and in extending their definitions from the case of
state-space systems (£ = I) to include the system 0.

Several attempts have already been made in this direction.
Taking the Laplace transform of 8, Rosenbrock [8] and Verghese
et al. [12] have developed fairly extensive theories of input and
output ‘‘decoupling zeros’> which are, in a sense, frequency
domain analogs to controllability and observability. In the time-
domain, the work of Yip ef al. [14] has proceeded along more
traditional lines, treating the differential equation € directly.
Although other work in this area has certainly appeared (e.g., [2],
[71, [11]), we view the results contained in [8], [12], and [14] as
being representative of the main points of view.

It is our intent to develop a theory which unifies the most
fundamental elements of the existing time-domain and frequency-
domain approaches and which also rectifies what we see as their
primary shortcomings. In particular, we are interested in explor-
ing four central issues: 1) A basic difference between the theories
of [8] and [12] lies in their definitions of controllability and
observability at infinity. It is natural to ask whether either
approach is, in some sense, more ‘‘correct.”’ 2) The develop-
ments of [8] and [12] give what are essentially frequency-domain
theories. Although {12] does discuss some time-domain implica-
tions, we feel that there is a need for a more explicit and
mathematically precise time-domain formulation. 3) As we will
see in Sections III and IV the definition of controllability
presented in [14] is consistent with that of [8]; however, the notion
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of observability in [14] does not take into account infinite
frequency behavior as described in either [8] or [12]. 4) In [14], as
the authors themselves point out, controllability and observability
are not algebraically dual concepts. Also, ‘‘inconsistent’’ initial
conditions (as defined in [1]) are not accounted for. We will see
that these two difficulties are closely related.

As mentioned in 3) above, the definition of controllability at
infinity used by Rosenbrock {8] is consistent with the correspond-
ing concept (C-controllability) in Yip [14]. We accept this
approach since it is clearly motivated by the idea of reachable
states. With this as our starting point, we will deal with 1) and 2)
by extending the ideas of [14] to give a complete time-domain
characterization of controllability as described in [8] and [12].
Such a theory should then clarify the conflict between the two
definitions of controllability at infinity. It will be seen that
Verghese’s controllability at infinity, although not directly related
to reachable states, is equivalent to one’s ability to generate a
maximal class of impulses using piecewise smooth, nonimpulsive
controls. (Verghese should be given credit for essentially this idea
couched in frequency domain terminology. In [12] he says that
*‘controllable impulsive modes are those that can be excited from
zero initial conditions using nonimpulsive inputs.’’) This moti-
vates the term ‘‘impulse controilability.”” The importance of
impulse controllability will be shown by demonstrating its relation
to certain feedback compensation problems.

Issues 3) and 4) will be dealt with by deviating from the
approach of {14] and defining observability in a way that is
compatible with [8] and [12], accounts for inconsistent initial
conditions, and allows full algebraic duality. We will then proceed
to extend the standard state-space duality theorem to singular
systems.

II. PRELIMINARIES

We begin by noting that condition (1) is necessary and
sufficient for existence and uniqueness of solutions in ¢ [5, p.
452]. It will be convenient to decompose 8 into subsystems. Let

r=deg |Es—A|.
Then (see [5, p. 28], [3]) there exist a linear nonsingular
M:R" — R" and subspaces S @ F = R" with dim S = r that
decompose the equivalent system

MEX = MAx+ MBu

y=Cx
into
Xy=Axs+ Bgu
& :
Ys= Csxs
g, Af/\'ff=x;+ Bfu
f .
Yr=CsXs
with
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y=Yys+yr.!

A_,is a nilpotent operator with index g. Let the initial condition of
0, be

X5(0) = xg5.

We wili need the following spaces of functions. Let C' be the i
times continuously differentiable maps, and Ci the i times
piecewise continuously differentiable maps on R with range
depending on context. Also, let Ci' be the same as Ci, but with
domain [0, o). Let D be the C* functions ¢:R — R with
bounded support, and D’ the space of distributions on R (as in
[101). We define ®, to be the piecewise continuous distribu-
tions: D, consists of those distributions f for which there exist
points ‘-, 7 5, T_1, To, Ty, T2, *** in R (finitely many in any
bounded interval) and a piecewise continuous function g such that
f = gon (r;_;, 1) for every i. Finally, let D+ and " be the
spaces of distributions with support in [0, o) and with point
support at 7, respectively. Elements of D/, D7, D", and D7 all
have range spaces depending on context.

In order to speak in precise terms about the impulsive part of x
and y we will need the concept of restrictions of elements in D,
For any 7 € R and any f € D, there exist ¢ > 0 and a piecewise
continuous g such that f = g on (7 — ¢, 7). Define

£lir, 2)ED’
by
(fllr, «), )
0 if supp ¢C(—oo, 7]
' 8060 de

{f, ¢)—§ if supp ¢C[T—€, >).

,—
This determines f |[7, o) uniquely since
3)(_ 0,7] + :D[T_E,a,) = :D

where D, denotes the subspace of D consisting of those ¢ with
support in 1. Defining f|(— oo, 7] similarly, we set

vf![Th TZ] =.,f![7h w)"".f!(_m? TZ] _.,f;
Sl =f|lr, 7]

S+ =£110, o).

Then, for any f € D, we have f, € D+ and fIr] € D" A7)
may be thought of as the impulsive part of f at 7. Note that f,
includes any impulses in f at the origin.

Left- and right-hand limits in O, may be defined by f(7~) =
g(r7)and f(r*) = g(r*) where g is piecewise continuous and f
=gon(r — ¢, 7 and (7, 7 + ¢). Then

AS=fE)-f(7)

Ta 2Ty
22T

is the jump in f at 7.

Let 6, € D7 be the unit impulse at 7. We then have the
following obvious result.

Proposition 1: For any f € D

D (fllr, o) =flI7, ®) + 8,f(77)

2) (7)) = Sl7l ~ 8, Af.

We may write the unique solution of 6, (see [S, p. 48]) as

g-1
Xp=— >, ALBru' 2

i=0

! An appropriate choice of basis in R” would yield a block-diagonal matrix
representation for the decomposed system. Many of the authors listed in the
references take this approach; however, we prefer coordinate-free interpreta-
tions whenever possible.
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where #* denotes the ith derivative in the distribution sense. In the
terminology of [1], an initial condition X, is said to be ‘‘inconsis-
tent’” if x, & S. This concept originates from the fact that, as (2)
indicates, the response of §; is determined completely by « alone.

In discussing controllability and observability, it will be
necessary to work with x, and x[7]. These distributions can best
be described by a corresponding pair of differential equations.

Proposition 2: Let u € C%~! be given and x € D, be a
solution of 4.

1) If z is the unique distribution in D * satisfying EZ = Az +
Bu, + 80Ex(07), thenz = x,.

2) If z is the unique distribution in D7 satisfying EZ = Az ~
8, EAx, then z = xf7].

Proof: The statements follow immediately after applying
Proposition 1 to the system 4. O

Hence, we have the equations

E(,)=Ax, +Bu, +8Ex(0™)
) y+=Cx,
. EQGI]) = Ax[7]—-5,E(4,%)
) Y7l =Cxi1]
characterizing the system response for = 0 due to the initial
condition x(0 ), and the impulsive behavior of the system at f =
7. Note that this formalism is in keeping with the idea that
impulses occur in the natural response (u, = 0) whenever x(0 ~)
& Ker E (see [12]). 6* and 67 may also be decomposed in the
same way as 0, yielding 6, 07, 87, and 67.

A crucial observation that will be used to simplify matters later
On concerns

0+

7

g7 . ArCerlrl) =27171 - 8, A,(A.x7)
4 y7[r1= Crxl7].

Since 4 € C97, Ax; = 050 A, x = A, x;. Thus, the expression
analogous to (2) for 0} is

xlrl= =Y, AN(-81A47(8.x)
i=0

q-1
=3 5i71414,%). 6)
i=1

This means that the impulsive behavior of 8 at 7 depends only on
the jump in x at 7. All forcing functions u that produce the same
A,x result in the same x{7].

III. CONTROLLABILITY AND IMPULSE CONTROLLABILITY

In this section, we start by briefly summarizing the theory of
controllability for singular systems as developed by Yip et al. in
[14].

Definition: 0 is controllable if for every v > 0, xs € S, and
w € R" there exists « € C7-! such that x(1) = w.

Define the subspaces

r—1 g1
®;=3 Im (AiB)), ®=Y Im (A'B))
i=0 i=0
R=R,e R,

R is the controllable subspace.

Theorem 1 [14]:

Dletr > 0, xo € S, and w € R”. There exists u € C!
such that x(7) = wiff w € R.

2) 6, is controllable iff

Im AE—-A)+Im B=R"
for every A € G.
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3) The following statements are equivalent.
a) 0, is controllable.
b) ®; = F.
¢)Im Ay + Im B, = F.
d)ImE + Im B = R".
4) The following are equivalent.
a) @ is controllable.
b) 6, and 6, are both controllable.
R = .
We now extend the theory in a way that elucidates the
differences between [8] and [12]. Since jumps and impulses in the
natural response are so clearly a featare unique to singular

systems, we would like to augment the preceding results with
statements concerning H* and 7. First we treat mmnc

IVCLCA)D(IIJ/
q-1
-, ALB(Au')
i=0
g-1
€Y, Im (4}B)).
i=0
Sufficient: Choose wg, - - -
q-1
-y AiBwi=w
i=0

» Wg_1 such that

and let

1

wo+ (t— 'r)w,+ t—*wy+ - -

1

g—Dn!

u)=1 + E=-n""wey, 27

0 O

Moving on to impulses, we need some preliminary definitions.
As demonstrated in (3), we can define a map I:F — D" which
takes the jump in x into its corresponding impulsive part. That is,

q—1
Lwy=Y, 814w, %))
i=1

Definition: 0 is tmpulse controllable if forevery r E R, w €
F there exists u € C such that x[7] = I(w).

Impulse controllablllty guarantees our ability to generate a
maximal set of impulses, at each instant, in the following sense:
Suppose E and A are given but B and u are allowed to vary over
all values. Setting B = I gives ®; = F, and Theorem 2 then
indicates that any A € F can occur. Hence, from (4), the largest
set of impulsive distributions that can possibly be generated at 7 ,
for fixed E and A, is just I,(F) C D". On the other hand, if B is
also given, Theorem 2 and (4) show that the set of possible
impulses at 7 is I,(R,). Thus, an equivalent definition of impulse
controllability is that 8 have

L(®y) = I(F).

The ability to generate the maximal class of impulses is

important, for example, in problems where random disturbances
are present. To see this, consider the system

Ex=Ax+Bu+v
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where v is a disturbance input. Clearly, any jump Ax € F can be
induced by v alone, resulting in perhaps any distribution from
I(F). Impulse controllability is equivalent, therefore, to our
ability to cancel all such impulses by choosing u. It will be seen
that such a feat can be achieved with linear feedback.
We are now ready to characterize impulse controllability

algebraically. Let

q-1

9,=, Im (A%By).
i=1

Theorem 3: For any w € F, there éxists ¥ € C4~! such that
x [7] = I{w) iff I(w) € 9,.2
prnnf From (3) and (4),

I(w) 1ffA (A xX) = A,w

50, from Theorem 2 ex1stence of an approprlate uis equlvalent to
w € ®; + Ker A;. Under this condition,

g-1
IL(w)€E E AW®s+Ker Ay)

Yf‘)"l =
L

-1
2 ALy

q
i

—

q-

qg—1
Y Im (AF+/By)
j=0

|

i
q

Im (A}B)).

[
—_

i

On the other hand, if I(w) € 9,, thenA’ weEd, = A;Rsfori =
1, -+, g — 1. In particular,

AfWEAf(Rf

or
wE R+ Ker Ay, J

Using Theorem 3, we may describe in more detail the set
I(®;) of impulses which # can generate. In particular, the
following result applies to the maximal set 7,(F) (by letting B =
D.

Proposition 3: I(®,) is a subspace of D7, isomorphic to 9,.

Proof: Since I, is linear, I,(Ry) is a subspace. Let ¢ € D
satisfy ¢(7) # 0, ¢'(r) = 0,i =1, -+, ¢ — 2. Theorem 3
shows that the map f:I,(w) — (I.(w), ¢), where w ranges over
®/, takes I(®R,) into 9,. Since fis linear, we need only show that
[ is bijective. If (I.(w), ¢)= 0 then, from (4), ¢()Aw = 0 and
I(w) = 0. Thus f is one-to-one. If v € 9,(=AR/), choose w
€ ®/so that ¢(r)Aw = v. Then fil(w) ~ v, and fis onto.[]

Theorem 4: The following statements are equivalent.

1) 8 is impulse controllable.

2) 0, is impulse controllable.

3) R, + Ker Ay = F.

4) 9, = Im A,.

5)Im Ay + Ime + Ker Ay = F.

6) There exists a linear K: @}" — R™ such that deg |Es — (4 +
BK)| = rank E.

Proof: The equivalence of 1) and 2) follows immediately
from the definition of impulse controllability and the observation
that x{r] = x{r] must always hold. Equivalence of 1) and 3)
follows from the same definition and the first sentence in the proof
of Theorem 3. Since

g,-=Af(Rf=Af((Rf+ Ker Af)

statements 3) and 4) are equivalent. That 3) and 4) imply 5)
follows from

2 For a distribution f, we say f € ¥V C R"if (f, ¢) € Vforall ¢ € D.
Intuitively, 7,(w) ‘‘points along’’ 9,.
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Im A;+Im By+XKer A;=9,+Im Br+Ker Ay

&

Yas Ker A r
=F,
Conversely, 5) implies 3) since

Im A}+‘+Im A}Bf=Im A}', i=1, -, g—1

implies

F=Ker Aj+Im By+Im AgBp+ -+ +Im A4~ 'By+Im A4

=Ker A‘I[‘+ (Rf.
Finally, the equivalence of 5) and 6) was established in [3].[1

With Theorem 3 in mind, we call 9, the impulse controllable
subspace. Theorems 2 and 3 complement Theorem 1 in describ-
ing the type of behavior that can be induced in x through choice of
u; only jumps in &, and impulses (and their derivatives) along 9,
can be generated.

Statement 6) in Theorem 4 is added for completeness. In [3]
and [4] we solved problems related to the elimination of impulses
in §. We obtained results involving the application of a linear
feedback law u = KXx which reorganizes the structure of  so that
A, = 0and, consequently, so that no impulses can exist. Theorem
4 states that, if impulses can be eliminated at all, they can be
eliminated with linear feedback.

We are now in a position to interpret some of the definitions in
{8] and [12] in the light of Theorems 1-4.

Theorem 5:

1) 0 is controllable at infinity in the sense of Rosenbrock (8] iff
0, is controllable.

2) # is controllable in the sense of Rosenbrock iff 6 is
controllable.’

3) 0 is controllable at infinity in the sense of Verghese [12] iff §
is impulse controllable.

4) 6 is controllable in the sense of Verghese iff §; is controllable
and @ is impulse controllable.

Proaof: 1) The condition in [8] for controllability at infinity is
that the matrix {E — sA B] have full rank for s = 0. This is
equivalent to Theorem 1, part 3d).

2) From [9], 6 has po finite input decoupling zeros iff [sE — A
B] has full rank for all s € @; this is equivalent to Theorem 1,
part 2). In combination with 1), we have controllability of both
subsystems so the result follows from Theorem 1, part 4b).

3) As [12] indicates, uncontrollability at infinity is equivalent to
the existence of a vector v # 0 such that (in matrix terminology)

v'[sE — AB] = w'[E 0]

for some w and all s€ . Passing to the Weinerstrass cononical
form of sE — A via an equivalence transformation (see [5]), it is
clear that uncontrollability is equivalent to the existence of v =
[6:/65] # O such that

Gl A 0 B L0000
172 0 SAf'—I B/ 1 0 A/ 0

for some w. Since v’ (s — A;) = w{ must hold for all s, 7; = 0
Also, v;(sA ;- I) = w;A,implies that 7;4, = 0 or vz €EImA; 5
Hence, U; = wyAyand uzBf = Qorv, € Ker A, rand 5, € Im
B;. 7. Controllability at infinity is therefore equivalent to

Im A;‘ﬂ Im B2 M Ker Af*=0

or
Im A;+Im By+Ker A;=F.

3 For the sake of uniformity, we are taking slight liberties with Rosen-
brock’s terminology . More correctly 1) and 2) should begln with *‘6 has no
input decoupling zeros™* instead of *‘0 is controllable.’
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4 In[12] a system is said to be controllable if it satisfies the
matrix condition in the proof of part 3) as well as the condmons

ko

for having no finite input decoupling zeros presented in [9]. [

IV. OBSERVABILITY AND IMPULSE OBSERVABILITY

Our task in this section is to define observability for singular
systems in a way that reduces to the state-space definition when E
= I and allows for a set of results analogous to Theorems 1-5. In
particular, the observability equivalent of Theorem 5 must hold if
we are to have a time-domain characterization of results in [8] and
[12]. Clearly, ours is not the only way to generalize state-space
observability (e.g., [14]); however, our insistence on duality
narrows the field to only one definition as far as we can see. The
definition is justified by the body of results which succeed it.

Definition: 8 is observable if !mcwledoe ofu, € Cg ', y,
€ D+, and y(0 ) is sufficient to determme x(O ). 0is tmpulse
observable if, for every 7 € R, knowledge of y[7] is sufficient to
determine x[7].

We also define

r-1 qg-1
Ne= (\Ker (C,A),  Iy= ()Ker (C;A%)
i=0 i=0
N=N, @ Slf
q-1
.= [ )Ker (C;A}).

i=1

In a manner analogous to Wonham [13] we call 91 the
unobservable subspace and 9, the impulse unobservable
subspace. The following results justify this terminology; they are
organized in such a way as to point out the symmetry between
controllablhty and observablllty for singular systems. Theorem &
+ 5 is analogous for k = 1, ---, 5.
Theorem 6:
DLetu, = 0inf*. Theny, = 0, y(0)
Nn.
2) 8, is observable iff Ker A\E — A4) N Ker C = 0 for every A
€ @.
3) The following statements are equivalent.
a) O, is observable.
b) 9, = 0.
¢) Ker A; N Ker C; = 0.
d)Ker EN Ker C = 0.
4) The following are equivalent.
a) @ is observable.
b) 6, and 6, are both observable.
)N =
Proof:
1) We need only consider y,, since y;, = 0 is equivalent to
x(07) € 9N, Since u, = 0,

= 0iffx(0") €

-1
Y+ = —qE 8-1CrA L%, (07)

i=1

s0 ¥r. = 0, (0~) = 0 is equivalent to
x(0")EKer CrA},  i=0, -+, q-1.
2) From the decomposition 6, §, we see that
ME|S=1, ME|F=A;, MA|S=A,, MA|F=1,
C,=C|S, C;=C|F. o)
Since A4, — I is nonsingular,
Ker (\E—-A)NKer C=Ker WME —-MA)NKer C
=Ker (\[—A,)NKer C,.
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3) Equivalence of a) and b) follows from part 1) and the
definition of observability. Since 9 is defined in a manner
identical to I1;, we know from state-space theory that a) is
equivalent to

Ker (\[-A;)NKer C;=0

for every A € ©. To obtain c), set A = 0. Finally, to demonstrate
equivalence of ¢) and d), apply the transformation M

Ker ENKer C=Ker MENKer C

=Ker A/NKer C;.

4) The equivalence of a), b), and c¢) follows from the definitions
of observability and 9T, and from 1). [
Theorem 7:

Yrl1=0, Ay=0 iff AxEN,.

~ Proof: Since Ay = CyAx) and y[r] = D}
8- 1C;A (A x), the condition y[7] = 0, A,y = 0 is equivalent to

A xEKer (C,A}) i=0, -+, qg-1. ]

Corollary: Knowledge of y[7] and A,y are sufficient to
determine A,x (and therefore x{7]) iff N, = 0.
Theorem 8:

ylr]=0 iff A, x€E9,.
Proof: y[r] = 0 is equivalent to

CrA(Ax)=0, i=1,-:-, g1

or
Ax€Ed,. 1

Theorem 9: The following are equivalent.

1) 8 is impulse observable.

2) 6, is impulse observable.

3) E)’Lf N ImAf = 0.

4) 3, = Ker A,.

5)Ker A, N Ker C; N Im A, = 0.

6) There exists a linear K:R* — R” such that deg |[Es — (A +
KC)| = rank E.

Proof: Equivalence of 1) and 2) follows from the definition
of impulse observability and the observation that y{7] = y[7] and
xA7] = x[r]. To prove the equivalence of 1) and 4), note that
from (3) x[r] = 0 iff Ax € Ker A, Combining this with
Theorem 8 and the definition of impulse observability gives the
desired result. To prove the equivalence of 3), 4), and 5) we need
only choose inner products on F and R*, and apply Theorem 4 to
the adjoint transformations A sand C[ This gives that the three
conditions

g—1
Y, Ker (C;A)Y)+Im A}=F
i=0
g-1
Ker A} =" (Ker (CrAL)*)

i=1
Ker Af*+Ker Cfi+Im A;: F

are equivalent to one another. Take the orthogonal complement of
both sides in each expression. We postpone treatment of 6) until
the next section. O
Theorem 10:
1) 6 is observable at infinity in the sense of Rosenbrock [8] iff 6,
is observable.

2) 0 is observable in the sense of Rosenbrock iff 8 is
observable. *

* As in Theorem S, 1) and 2) might begin more correctly with “‘6 has no
output decoupling zeros.”’
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3) 0 is observable at infinity in the sense of Verghese [12] iff 8 is
impulse observable.

4) 6 is observable in the sense of Verghese iff ; is observabie
and 6 is impulse observable.

Proof:

1) The condition for observability at infinity in [8] is that [E’ —
sA’C’]’ have full rank at s = 0. This is equivalent to Theorem 6,
part 3d).

2) From [9], @ has no finite output decoupling zeros iff [SE’ ~—
A’C']’ has full rank for all s € @©. The result follows from
Theorem 6, parts 2) and 4b).

3) As shown in [12], unobservability at infinity is equivalent to
the existence of a vector v # 0 such that

13-

for some w and all s € ©. The remainder of the proof is
analogous to that of Theorem 5, part 2).

4) Analogous to Theorem 5, part 4). O

Note that, if inconsistent initial conditions are not allowed, our
definition of observability reduces to that of [14]. It is only our
taking inconsistent initial conditions into account that has allowed
the formulation of Theorems 6-10. It can easily be shown that 6 is
‘“‘observable’’ in the sense of [14] if and only if 6, is observable in
our sense; 0 is always ‘‘observable’” in the sense of [14]. This
spoils the symmetry with Theorem 1.

Our final observation before turning to the duality theorem is
that the subspaces R and 9N, are defined in terms of Ay, By, and
C; in exactly the same way as are ®R; and 9, in terms of A, B;,
and C;. Therefore, the standard fourfold Kalman decomposition
[6] of 6 can be applied equally well to 6, yielding an eightfold
decomposition of the entire system. We thus have a geometric
characterization of the Kalman decomposition for singular sys-
tems as originally described in [12] for the frequency domain. For
the sake of brevity, we omit the details.

V. DUALITY

Clearly, there is a strong sense of symmetry between Theorems
1-5 and Theorems 6-10. We now extend this idea and show that
the subspaces ®,, 9, 9,, etc., and the notions of observability,
impulse controllability, etc., have been defined in such a way that
controllability and observability are dual concepts in an algebraic
sense. Corresponding to 6 we define the dual system

g- E'x=A'x+C'u
) y=B'x
where a prime denotes the adjoint transformation with respect to
some given inner product. In state-space theory (E = I) we know
that 6 has controllable and unobservable subspaces ® = 91+, 9
= R *. (An overbar will hereafter denote quantities related to 4.)
To generalize this to singular systems we need some preliminary
results.
Theorem 11:

S=(AF)*
Proof: Define

F=(ES)*.

Lhi=(\E-A4)"! ©)

where A is chosen to make NE — A nonsingular. From [3] we
know that T\ ES = S and T\AF = F so

T, 'S=ES, T, '=AF. W)
Also,

P 1 .
S=Ker <T>(E’- 1> !
e -0
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where p is the number of distinct roots of |Es — A| and #; is the
multiplicity of the ith root. An asterisk denotes the complex
conjugate. Thus

I\
§=Im H (ETX—KI>

i=1 A

= T7!' Im nhE———1
* E * A=N

=(T;'F)* =(AF)*
F=Ker (TJE’)"~"=Im (ET,)"~"*
=(Ty' Im (HE)" N * =(T;'9)+*
=(ES)*. O

If U and V are subspaces of R"and U © V = R”, let ®(U,
V):R" — R”" be the transformation that projects vectors on U
along V. Also, let

P=0@(S, F)
Q=0(F, S).
Lemma:
1) P = (T5'PT))’ and @ = (T 'QT>)’ where T is defined in
6). _
NM=M.
Proof:

1) From Theorem 11 and (7)
BP=@®S, F)y=®(AF)*, (ES)*)
=®(ES, AFY =&(T'S, T;'Fy’
=(T'®(S, F)T))’

Q is handled similarly.
2) From (5), MEP + MAQ = Iso
-1=EP+AQ.

From part 1)

M-'=E'P+A’'Q

=(T{(PT\E+ QT A))'.

But P, Q, THE and T)A all commute so

M-'=(EP+AQ)’. 0

Theorem 12 (Duality Theorem):
D&, = ENH* NS

)Ry = ANY* N F

AR = (EN; ® ANY*

HAR, = ERY)* N S

59 = (ARY* N F

6)91=(E(R & ARy
N3, =(A9)iﬂF
89, =(9)* NF

f

1) From (5), M~Y|S = E|S and M~'|F = A|F. Let P, be the
same as P but with range restricted to S. Then (see [3]) B,
P.MB. From the lemma

r-1

(ﬁs=2 Im (A:B,)
i=0
=E Im (M’A’|S)YP,M'C")
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r—1
=Y Im (M’'A')PM'C’)
i=0
r—1
=, Ker (CMT;'PT\(AM))*.

i=0

Since MT; !, MA, and P commute,

r—1
< nKer (CP(MA)’M))

i=0

=< <:r;]1<er (C,Al) o F>>

=(Ed; & AF)+*
=(EN)*t N (AF)*.
The result follows from Theorem 11. Part 2) can be proven
similarly.
3 R=(ENH* NS @ (AN)* N F)
RL=(EN, ® AF) N (A9, © ES)
=M~ ((N; © F) N (N, @ S))
=M~ @ N,)
=EN, ® AN,

r—1
4) 9,= (Ker (C;AL

i=0
r—1

= {Ker (B’ |S)M’A’|8))
i=0
r—1
= (\Ker (B'(M’A')P) N §
i=0

il

r—1 n
<E Im (T;‘PTX(AM)"B)) ns

i=0

r—1
=< E Im (P(MA)’MB)) ns

i=0

r—1 n
=<M—1 2 Im (AiP,MB)) NS

i=0
=(E®Ry)+ N §.
The proofs of 5) and 6) are similar to those for 4) and 3).
7) As in the proof of 1),
g-1
g,=Y, Im (A}By)

i=1

g-1
=< ( OKer (Cra) o s>>

=(A9, ® ES)*
=(A9)* N F.

The proof of 8) is similar to 7).
Corollary:
1) 6 is controllable iff 6 is observable.
2) 6 is impulse controllable iff @ is impulse observable.
Proof:
1) ® = R"iff EN, = AN, = 0. From (5), E|S and A|F are
injections and ES N AF = 0so ® = R"iff 9, = 9, = 0.
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2) From the definition of 9, and Theorem 4, part 4), # is
impulse controllable iff dim 9, = p — r where p = rank E.
Similarly, from Theorem 9, part 4), § is impulse observable iff
dim §, = n — p. Theorem 12, part 8) shows

9,=(A9, @ ES)*

dim 9,=n—(dim A9,+dim ES)
=n—r—dim 4,. ]

Note that Theorems 11 and 12 reduce to the standard state-
space resuits when E = I.
The duality theorem may be used
art

We know from Theorem 4, pa
exists such that

deg |E's~(A’+C’K’)| =rank E

ove Theorem 7, pau U}

{o pr
6), that a linear K:R* — R”

iff § is impulse controllable. It follows that
deg |Es—(A+KC)| =rank E

itf § = 6 is impulse observable.

VI. CONCLUSIONS

In order to unify various theories related to singular systems,
we have defined observability to allow for the possibility of
inconsistent initial conditions. Also, a new pair of time-domain
concepts unique to singular systems, impulse controllability, and
impulse observability, have been described. All definitions were
motivated not only by dynamic system considerations, but also to
make the theories of controllability and observability algebraic
duals of one another. We believe our theory to be the simplest and
most intuitively appealing possibility.

‘We have also seen that the results described in Theorem 4 relate
directly to previous work in [3] and [4] dealing with impulse
cancellation. Exactly how the theory presented here relates to
more advanced topics in linear system theory, as applied to
singular systems, is a topic for further research.
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