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Descriptor Variable Systems and Optimal

DANIEL COBB, MEMBER, IEEE

Abstract —Linear systems of the form Ex = Ax + Bu with E singular are
treated. It is desired to find a control which drives the system asymptoti-
cally to the origin, minimizing a quadratic cost functional. No restrictions
are placed on initial conditions. The cost associated with the impulsive
behavior of the system is examined as well as existence and uniqueness of
the optimal control. Through a sequence of coordinate transformations it is
proven that the optimal control can be found by solving a reduced order
Riccati equation.

INTRODUCTION

HE problem of optimal state regulation of a linear

state variable system X = 4x + Bu has been treated

extensively in the literature, e.g., [1]-[4]. By far the most

common cost functional considered in the problem with
infinite terminal time has been

oc

I(xu) = [ (O + (o) . (1)

Often the conditions on J are relaxed letting ||x(¢))| denote

a seminorm. It is well known that when ||x(¢)|| is a norm,

an optimal control exists if and only if (A4, B) is a stabiliz-

able pair. In this case the optimal control is unique and can
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be implemented by applying a linear feedback gain to the
system. The appropriate feedback matrix can be calculated
by solving a certain matrix Riccati equation whose order is
equal to that of the system.

We wish to show that analogous statements can be made
about the descriptor variable system

FEx = Ax + Bu

)

where x(t) € R" and E is singular. Such systems have been
considered in [5], [6], [9]-[13], [15], [16]. In particular, we
have derived general results concerning feedback in de-
scriptor systems in [5]. This paper may be viewed as a
continuation of [5], in that optimal feedback gains will be
discussed for the system (2) with cost (1). It will be seen
that the appropriate feedback matrix can be computed by
solving a Riccati equation whose order is rank E.

Note that a state variable system may be viewed as a
special case of (2) with E = I. The treatment of the descrip-
tor problem is then a generalization of that for the state
variable problem, both requiring the solution of a Riccati
equation of order equal to rank E. In the descriptor case, E
may have less than full rank so the corresponding Riccati
equation may be considered to have reduced order.

The optimal regulator problem for discrete-time descrip-
tor systems has already been studied in [7]. Unfortunately,
the nature of the discrete-time problem is so different from
that of the continuous-time one, that the solution of our
problem cannot be deduced without an independent analy-
sis.
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More similar to our results are those of [9]. However,
there are several important ways in which the results of [9]
differ from those we will obtain. First, the problem formu-
lation of [9] excludes the possibility of “inconsistent” ini-
tial conditions as defined in {12]. It is shown in {6}, [11],
[12] that such an assumption avoids those cases where
impulses occur in the natural response of (2). We intend to
allow all initial conditions in our analysis. Second, the
approach of [9] yields a control scheme which may involve
successive integrals of the state variable. Our results will
show that in order to implement the optimal control, only
a constant feedback matrix is necessary (in the case of
infinite terminal time). Finally, calculation of the optimal
control scheme derived in [9] involves solving a Riccati
equation whose order is greater than n—much greater in
many cases. OQur solution involves a Riccati equation whose
order is less than n.

The approach that we will take is geometric in nature
and involves a reformulation of the optimization problem
as a minimum norm problem in Hilbert space. It is hoped
that this will avoid many of the technical complications of
the variational approach used in {9}.

We choose to view the equation (2) as the limit of a
singularly perturbed system. For example, consider a sys-
tem described by

—€ 1 x| _[* [O]
s N MEHE
where € > 0 is a small number. We consider only ¢ > 0. For
an initial condition x(0), the unforced solution of (3) is

[)ﬂ(’) ___ e !/ ——%e_’/‘ [XI(O)
x,(1) ) x,(0) |

0 e—t/(
It is easy to show that the upper right-hand term in (4)
tends to a delta function as ¢ = 0. Hence, we say that the
limiting system

0 1% Xy 0
[0 0][)’62] B [%]*[1]“
will behave impulsively unless some sort of compensation
scheme is devised. Obviously, a state-variable model would
not adequately characterize such a system.

The initial condition in (3) and (5) might result from a
random disturbance entering the system. This viewpoint
suggests that a feedback controller is called for, since the
precise value of x(0) is unpredictable and the control is
likely to depend upon x(0). In this example, the only
“consistent” initial condition is x(0) = 0. Numerous physi-
cal examples of systems with impulsive behavior can be
found in [11]-{13].

We may now proceed with the formal problem formula-
tion. Let X and U be real Euclidean spaces with norms and
inner products related by ||x||* = (x, x). We will not dis-
tinguish notationally between norms or inner products on
X and U. Let A and B be linear transformations from X

(3)

(4)

(5)
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into X and from U into X, respectively. Also let E be a
singular transformation from X into X. We make the
standard assumption throughout, that det(Es — A4) is not
the zero polynomial. Systems for which this assumption
does not hold have not been treated extensively in the
literature. It can be shown, however, that such systems may
have nonunique solutions (see {14]).

A canonical decomposition of (2) was proposed in [14],
[15] and adopted in [6], [12], [13], [16]. We interpreted it
geometrically in {5] yielding subspaces

SeF=X (6)

and subsystems

x,=L,x,+ Bu

(M
(8)

where L, is nilpotent. Each subsystem acts on its corre-

sponding subspace. Since general linear feedback does not

preserve the structure (6) (see [5]) and since the same

control u is applied to both subsystems, it is not possible to

solve the optimization problem by considering (7) and (8)
- independently.

We will use the theory of distributions as developed in
{17] and extended to vector spaces in [18]. Briefly, the
space K is the set of C* mappings from R into R with
bounded support. The sets of distributions K and K, are
the dual spaces of continuous linear transformations from
K into X and U, respectively. A distribution f acting on
¢ € K is denoted (f, ¢). We will have need only for those
distributions with support in [0, c0). We denote the spaces
of such distributions by K} and K.

According to the interpretation of [6], the system (2) has
a unique solution” for any initial condition x, and any
ue K;. x, is to be interpreted in the 0~ sense, i.e.,
xo=x(07). Letting e(A4) be defined on [0, 00) by

e(A)(t)=e"

and decomposing x, = x,, + xok according to (6), the solu-
tions of (7) and (8) are

Xg = e(Ls)xOS + e(Ls)* Bsu

g1
X, == by 8" Lixg, —

i=1

)

q-—1

Yy L;Bu' (10)
i=0

where 8v is the delta function along v € F defined by
(8v,9)=¢(0)v, “ *” denotes convolution, u’, 8’ denote the
ith derivatives in the distribution sense, and ¢ is the index
of nilpotency of L,. The solution of (2) is

(11)

Note that if  is C* then x,(0*) = — X72; L} B,u'(0). Hence,
xg and x(0*) may not be equal.

Let L% and L?, be the square integrable mappings from
[0,00) into X and U. {J(x,u) as defined in (1) is a
standard norm on L% X L? which we denote by ||(x, u)|,.

X=X+ X/
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L% X L% can be naturally imbedded in K} X K};. Clearly,
even if x and u satisfy (2), they need not both be L?
functions. Hence, we need to interpret J(x, u) when (x, u)
& (K} X Kfy)—(LA X L)

EXTENSION OF J TO K} X K}

The first question that comes to mind with regard to
extending the cost functional beyond the L? functions
involves the value of [°||8(¢)v||*dr. As exhibited by (10),
delta functions can occur in x even when u = 0, so we need
to decide on the cost that we will impose on such a
trajectory. Since (2) can be viewed as the limit of a singu-
larly perturbed system ([6), [11]-[13]), it is natural to
approximate v by functions whose cost we already know.
For example, we could choose

1
no, 0t p
f’l(t) =

0, — <.
n

Then f, — 8v in the topology of K7 and
o0
J| WA de = nlo? — oo
so we might claim that it is most reasonable to set
o0
/ 18(2)v)|?dt =oo.
0

However, we do not know yet whether choosing a different
approximating sequence would yield a different limit. The
following result shows us how to proceed.

Proposition 1: Let Z be a real Euclidean space, (z,) a
sequence in L%, and z€ K} — L. If z, > z in the K}
topology, then ||z,||, — oo.

Proof: Consider K with the L? norm imposed on it.
Since KX is dense in L2, the dual of K is L% so z must be
unbounded on K with respect to ||-||,. Thus,

sup [I(z,¢)]|=oc.
¢eK
li¢llz =1

Let M > 0 be given. There exists € K with |{y/||, =1 such
that

Iz, ¥ ) > M.

Since (z,, ¥) — (z, ¥), for sufficiently large n we must have

Nzl = sup I(z,, ®)I
- X=0.¢
ol =1

= 1(z,, ¥
>M.

Since M was arbitrary, ||z, ||, — oo. O
According to Proposition 1, not only should we interpret
I6v||, as infinite, but we should set ||f||,=oc0 for all
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fe(Ky XK5)—(Ly % LY). In this way J can be ex-
tended to all possible distribution pairs

J(x,u) = {n(x,u)uz, (x,u) € Ly x L,
0, otherwise.

By an optimal solution we mean, then, a pair (x*, u*)
satisfying (2) with J(x* u*) <oo and J(x*, u*)< J(x,u)
for all other (x, u) satisfying (2).

EXISTENCE AND UNIQUENESS OF THE OPTIMAL
CONTROL

We wish to find conditions under which a solution to the
problem of minimizing J exists and when it is unique. We
will do this through an application of the Hilbert $pace
projection theorem. But first we must take a closer look at
the geometry of the problem. Let

q—1
A= {(x,u)EK} X K}|x=e(L,)*Bu— Y, L}Bfui}.
i=0

It is easily verified that A is a subspace of Ky X K. Let

q-1 v
N(xy) = (e(Ls)xOs -y sf—‘L;xo,,o) €Ky XK.

=1

The first entry of 9 (x,) is the natural response of the
system (2). In fact, it is clear from (9)—(11) that x € K} is
generated by applying u € K|, to the system (2) if and only
if

(x,u) €N (xy)+A.

Hence, (2) and the initial condition x, determine the
constraint set 9 (x,)+ A over which J(x, ) must be mini-
mized.

For an optimal point (x*, u*) to exist there must be at
least one point (x,u) such that J(x,u)<oo or, equiva-
lently, (x,u)€ L% X L%,. In order to establish conditions
under which this is true we need two preliminary results.
The first follows from uniqueness of solutions of (2).

Lemma 1: Consider two descriptor systems, both with
initial condition x,

i) Ex= Ax+ Bu
i) Ep=(A+BK)y+ Bo

where K: X > U is a linear transformation. If v € K}, is
chosen and applied to ii), generating y, and we apply
u = Ky + v to i), then y is the solution of i).
a
The second is an extension of a structural result proved
in [5]. It was shown in [5] that, when

ImL,+KerL +ImB,=F

one can construct a linear transformation K: X - U such
that

KerK DS (12)
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and
det(Es— A—BK)=0 (13)
and such that the closed-loop system
Ey=(A+BK)y+ Bo, ic.x, (14)

exhibits no impulsive behavior. Furthermore, a geometric
decomposition of (14) can be employed yielding subspaces

Sk@F, =X
where
dim Sy =rank E
and corresponding subsystems
$, =Ly, +Bgv,  1cC Xgx (15)
0=y + Bygo, ic.xoy (16)

where x, = xo.x + Xosx-

It was shown further in [5] that the closed-loop system
(14) has, as its set of eigenvalues, those of the original
system along with some others that were induced by apply-
ing feedback. If none of the induced eigenvalues is equal to
any of the original ones, a decomposition of subsystem (15)
may then be invoked to prove the following.

1) Each controllable mode (eigenvalue and correspond-
ing eigenspace) of the original system (2) is also controlla-
ble as a mode of (14).

2) Each induced mode of (14) is controllable.

Hence, stabilizability of (L,, B,) implies stablizability of
(L, Byx)-

The required decomposition cannot, however, be em-
ployed if any of the induced eigenvalues are equal to any
of the original. Even though this situation seems likely to
be a pathological case, we choose to eliminate the problem
by introducing the next result.

Proposition 2: Statements 1) and 2) above are true for
any feedback matrix K satisfying (12) and (13).

Proof: 1t is clear from the development of [5] that we
need only show that

Im(AE—A-BK)+ImB=X
for each number A satisfying
Im(A ~L,)+ImB,=S.

From [5] we know that there exists an invertible M: X —» X
such that ME|S=1, ME\F=L,, MA|S=L,, MAIF=1,
PspMB =B, and PrgMB= B, where Pg. and Pgg are
projection operators and the vertical bar denotes restric-
tion. Let K, = K|F. For any x € X decompose Mx = x +
x, with x; € S, x, € F and choose y, € S, w € U such that

(M—-L)y,+Bw=x,.
Define
»=(AL,~1) (x,~ Bw)eF
v=w+ Ky,
y=nti.
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Then, by a straightforward calculation,
M(ME — A— BK)y+ MBv
= (AI— Ls)yl - Bsty2

+(AL,~ I~ B,K;)y,+ Bp+ Bv
= MXx.
The desired result then follows from the invertibility of M.

0
Corollary 2.1: For any K satisfying (12) and (13):
1) if (L,, B,) is controllable, then (L, B, ) is control-
lable,
2) if (L,, B,) is stabilizable, then (L, B,y ) is stabiliz-
able.
Corollary 2.2: If (L, B,) is stabilizable and

Im L,+KerLf +Ime =F

there exists a linear transformation K: X — U satisfying
(13) such that the closed-loop system contains no impulses
and is asymptotically stable.

Proof: Let K: XU satisfy (12) and (13) and elim-
inate impulses. Then the closed-loop system (14) has de-
composition (15), (16) with (L., B, ) stabilizable. Choose
K: Sg—U so that all eigenvalues of L + BxK have
strictly negative real parts and define

K=K+ KPg g,

where Py, . is a projection operator. Applying u = Kx+v
to (2) yields subsystems

ys = (le( + le(k)ys + BJ‘KU
0= B Ky, + y, + Byo
which has the desired properties. Clearly,
det(Es— A— BK)=adet(Is— Ly — B K)%0

for some constant a = 0. O

We are now in a position to establish necessary and
sufficient conditions under which, for any initial condition,
a pair (x,u) satisfying (2) exists with J(x,u)<oo. We
would like to have conditions that work for all initial
conditions simultaneously since in practice initial condi-
tions are often unknown.

Theorem 1: (M (xq)+ A)N(Ly X LE) =@ for all x, €
X if and only if (L,, B,) is stabilizable and

Im Lf+KerLf +Ime = F,

Proof:

(Sufficiency): As shown in Corollary 2.2, the two condi-
tions of Theorem 1 guarantee the existence of a linear
transformation K such that, for any x,, the closed-loop
system

Ey=(A+BK)y

exhibits no impulsive behavior and has all its eigenvalues
with strictly negative real part. Hence, its solution y is in

L%. Let u=Ky. Then, setting v=0 in Lemma 1, the
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solution of
Ex = Ax+ Bu
isx=yso
(x,u)=(p,Ky) e (N(xs)+A)N (LY x L}).
(Necessity): Suppose that for every x, € X there exists
(x,u) € (T(xy)+ A)N(LE X L2).
Then for each x,, € S there is a u € L?, such that
e(Ls)xOs + e(Ls)* Bsu € Lg‘

which implies that (L,, B,) is stabilizable, Also, for each
Xxos € F there must exist a u & L}, such that

q-1
'ZOL}Bfu' €L}.
i-

q—1
Y 8 Wixg +

i=1
Multiplying by L}"z yields

8LY Vixo, + LI 'Bi+ LY *Bue L.
Since u € L}, we must have

8LI™'xo, + LI 'Bjir € L.

Suppose
—-1 -1
L}f Im B, = Im L}'
and choose x,, such that
- -1
L}’ Ixor & L;’ Im B,.

Then BL;’“‘xO , and L}’“'B/a are linearly independent
members of K. Since

8L}’_ ]XOf e L%
the sum of the two cannot be in L%. Hence,
g-1 = q-1
L ¥ ImB,=ImL o
An easy result concerning nilpotent operators gives

ImLf+KerLf+Ime=F. [}

If the conditions of Theorem 1 hold, then

inf{J(x,u)(x,u) €N(xy)+A} <00 (17)
and the optimization problem has at least an e-optimal
solution. Since J = oo for points outside L3 X L?,, we may
restrict our attention to the smaller constraint set of Theo-
rem 1. Sindse all points in this set are also in L% X L?, and
since J is the square of an L? norm, the entire problem
reduces to a: Hilbert space optimization problem.

We would next like to know whether the infimum (17) is
achieved by some (x*, u*) and, if so, whether the optimal
pair is unique. The next result answers these questions.

Proposition 3: Under the conditions of Theorem 1,
(F(xp)+ A)N(LZ X L?) is a closed linear variety with
respect to the L2 norm.
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Proof: The set is obviously of a linear variety. We
need only show that A N(L% X L}) is closed. Suppose
u, — u, x, — x with respect to the L* norm and (x,, u,) €
A. Decompose x, x,, according to S® F = X. Then x,, — x
and x,, — x,. We now have

Xps = e(Ls)* Bxun
g1

X0 == 2 LiBu,.
i=0

L? convergence is stronger than convergence with respect
to the K’ topology so u, = u, x,, = x,, and x,, = x, in
K}, Ki, and KF. Since convolution and differentiation
are continuous operations in K’, it follows that

x,=e(L,)* Bu
qg-—1

xp=- 420 LiBu'.
i=

Thus,
(x,u)eA. O
Corollary: 1f (L,, B,) is stabilizable and

Im Lf +KerLf +1Im B/ =F

then there exists a unique (x*, *) such that
J(x*, u*) =1inf{J(x,u)|(x,u) € N(xy)+ A).

Proof: This follows immediately from Proposition 3,
the fact that

JCx,u) =[x, w3,

and the projection theorem.

We have, therefore, that the conditions of Theorem 1
guarantee that the set of pairs (x, u) satisfying (2) with
finite cost is nonempty and that a unique optimum pair
(x*, u*) exists. If the conditions of Theorem 1 are not met,
then all pairs (x, u) satisfying (2) have infinite cost and the
optimization problem makes little sense.

IMPLEMENTATION OF u*

In this section we will show the following. 1) As in the
state variable case, u* can be implemented by a linear
feedback law that is independent of x,. 2) The feedback
law can be found by solving a (rank E)th order Riccati
equation and applying some coordinate transformations.

For the remainder of the paper we adopt the two condi-
tions of Theorem 1. Thus, we are assured that a unique
optimum point (x*, u*) exists.

We intend to introduce a sequence of transformations on
K X K, whose inverses will take the original optimization
problem into a form that we already know how to solve.
The solution can then be mapped back through the
transformations to give us the solution of the original
problem.
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To reformulate the problem in terms of the closed-loop
system with no impulses, let

J: Ky XK{; = Ky X K}
be defined by
T(y,0)=(y,Ky+v)
where K: X — U satisfies (12) and (13) and eliminates
impulses. It is routine to verify that 9 is an automorphism
with an inverse given by
J Y x,u)=(x,— Kx+u).
Let J, be defined by the commutative diagram
‘]1
K% X K, R

N /
K} X K,

Since J is an automorphism, (L} X L}) = L% X L?,, and
VJ restricted to L} X L} is a norm, it follows that {J is a
norm on L% X L}, Finally, let

N\ (x0) = (e(Lyg ) x0,.0) € Ky X Ky
A={(y,0) EKx XK|y=e(Ly)*Byv~ BfKU}‘

Proposition 4: T(I,(xg)+ A;)=N(xy)+ A.
Proof: Choose (y,v)€ 9,(xy)+ A;: Then y is the
solution of (14). From Lemma 1, y is also the solution of
(2) where u = Ky + v, so

T(y,0)=(y,Ky+v) €I (x4)+A.
Hence,
6-(%l(x())‘“\l) C N (xy)+A.

To show the converse, choose u and let x be the solution
of (2). If we choose v = — Kx + u, Lemma 1 gives

T Hx,u)=(x,— Kx+u) €N, (xy)+A,
$0
(x,u) € T(N,(x0)+ Ay). o

By applying the transformation §~' to the original opti-
mization problem we arrive at the equivalent one of mini-
mizing J; over 9 (xy)+ A,. It is important to note that,
from the definition of J,, and since ¥ is an automorphism,
we are guaranteed that the transformed problem has a
unique solution. Unfortunately, we still do not know how
to calculate the optimum point. Hence, we must apply
additional transformations.

We may now reduce the dimension of the problem by
eliminating the subsystem corresponding to Fy. Consider
another transformation

I, Kg, XK = Ky X K},
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defined by

Ty, 0) = (»,— Bigv,v).
It is easily shown that 9, is a monomorphism

ImJ, ={(y,0)ly + Bgv €K, }

and

I (y,0)=(y+ Bygo,v)
whenever (y,v) € Im%,. From (15) and (16) it is clear that

N\ (xo)+ A, CcImT,.

Let J, be defined by

2
Ki XK, R

K% X K,
Finally, let

N,y (x0) = (e(Lyx)Xo5x,0) € K5, X K,
AZ = <(ys’o)|ys = e(le()* le(v>'

Proposition 5: @”l(%z(x0)+ A=, (xx)+ A,
Proof: Suppose y, is the solution of (15). Then, from
the equivalence of (14) with (15) and (16), y, — B, v is the
solution of (14) so

T (y0)=(y— By v, v) €M\ (x0)+A,.

Conversely, let y be the solution of (14). Then y = y, —
B v where y, is the solution of (15). Hence, (y, v) € Im T,
and

Gjl_l(ysv) = (yssv) € %2(x0)+A2
)
(7,0) €T (A, (x0)+ Ay). o

Since J,(L% X L%) is a subsystem of Ly X L}, /I, is a
norm on L% X L}. Again, we are guaranteed existence of a
unique solution to the transformed problem, but a method
for computing that solution is not yet clear. One more
transformation is needed to simplify the performance in-
dex.

In constructing the final transformation we need to
define

K,=K|Sg
K,=K|Fy
R= B/ By + (I~ K,B)(1-K,B)
where a prime denotes the adjoint operator.
Proposition 6: R is positive definite.

Proof: R is positive semidefinite since it is the sum of
positive semidefinite transformations. Suppose (Ra, a) =0
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for some a € U. Then
(Bf’KBfKa,a) ={
<(1‘ K2Bfl()’(1_ KzBfK)“’@ =0

50
(BfKa, BfKa) =0
and
Bixa=0.
Thus,
(a,@y=((1~ KZBfK)a’(I— KzBfK)“>
=0
and
a=0. ]
Next, let P, : X — Sk be the orthogonal projection oper-
ator onto Sg along S and define
P =Py |Fy

N=PBy +Ki(K,By—1I).
Let
3,: K§, XKy = K§ X Ky
be given by
9,(z,w)=(z,R"'N'z + w).

%, is an automorphism. Let J; be defined by

3
R
h /
Kg X K,

Ny(x0) = (e(Lyg + B.xR™'N') xg,x,0) € K& X K§

={(z,w)lz=e(L,x + B,xR"'N’')* B,xw}.

K5, XK

Finally, let

The constraint set 9,(x,)+ A; corresponds to the system

ic.xgx. (18)
A proof similar to that of Proposition 4 shows that
Ty (Fy(x0)+ As) =, (x0) +A,.

We have shown that the problem of minimizing J; over
the set 9 ;(xy)+ A, or, alternatively, with respect to the
system (18) is equivalent to the original problem of mini-
mizing J with respect to the descriptor system (2). We now
claim that we already know how to solve the transformed
problem involving J;.

2=(L,x+BxR 'N')z+ Byw
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Let
Q=I+K|K,—- NR™N.

Proposition 7: Q is positive definite and
J3(z,w)=/;m(Qz(t),z(t))+(Rw(t),w(t))dt.
Proof: A routine calculation gives

B (z,w)=J(z, RT'N'z+w)
= J,(z ~BxR™'N'z~ Byw,R™'N'z + w)
=J(z- BfKR‘ N’z - Byew, K2

e
e’

= [12(0)~ BxR™'N'2(1)~ Bow o)}
+||K,z(8)+ (I~ K, B )
(R™'Nz(8)+w(1))||*dt

=f0°°<(1+ KK, — NR™'N")z(1), 2(1))

+{Rw(t),w(t)) dr.
Since /7, is a norm on L X L} and , is an automor-

phism, /J; is also a norm so I + K{K, — NR™'N’ must be
positive definite. O
Let

G=L,+B, RN

and note that, since (L,x, B,x) is stabilizable, (G, Bx)
must also be stabilizable. Hence, the optimal z*, w* for the
transformed problem is related by

w*=—R"'B/ Zz*

where 2 is the unique positive definite solution of the

(rank E)th order matrix Riccati equation
2G+G'2—-32BR ‘B’KE +Q=0.

It remains only to map (z*, w*) through the transforma-
tions ¥, 9, and 9, to obtain (x*, u*). We have

(x*,u*) = 5(9,(F,(z*,w")))
=F(F,(2* R7'N'z* + w*))
=F(2*— BxR™'N'z* - Byxw*, R"'N'z*+ w*)
(z* B R™'N'z* — Byyw*, K z*
+(1= K,Bx )(R™'N'z* + w¥))
2*— By R™'(N'= By Z)z*,
(K,+(I—KzBfK)R“(N’—B;KE))z*).
Thus,

x*=z*— B, R"'(N'— B/(Z)z*. (19)
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Let T': S — X be given by
Ta=a—BxR™'(N'~ B/xZ)a.
From (19), x*(¢) must be in Im I for all ¢ so
2% =Ttx*
where I'T denotes the pseudoinverse. Hence,
u*=(K,+(I- K,B;x)R™'(N'— BxZ)) z*
= (K, +(I- K,B;x)R™'(N'— BjxZ))Ttx*.

To show that u* can be implemented simply by applying
the feedback gain

Q= (K, +(I- K By )R™\(N'— B/2))T't
to the system (2), define
A=A+ BQ

and note that x* is the solution of

Ey=(A-BQ)y+ Bu*, ic.x,.

Then, from Lemma 1, x* is the solution of

Ex = Ax+ Bu

where u = — Qx*+ u*. But u*=Qx* so u=0 and x* is
the solution of

Ex=(A+BQ)x, ic.x,

which is the desired result. This argument also shows that
there is precisely one pair (x, u) € M (xy)+ A satisfying
u = Qx. Note that the feedback matrix { is independent of
the initial condition.

CONCLUSIONS

We have shown that the problem of minimizing the cost
functional J as defined in (1) with respect to the descriptor
system (2) has a solution if and only if (L, B,) is stabiliz-
able and Im L, +Ker L, +Im B, = F. In this case the solu-
tion is unique and can be implemented by applying a linear
feedback law independent of the initial condition.

It was seen that the only reasonable cost to assign to
trajectories containing impulses is infinity. Hence, inherent
in the optimization problem is the problem of eliminating
impulses. The solution presented in this paper is thus an
energy optimal solution to the general problem, treated in
[5], of eliminating impulses with feedback.

In motivating the infinite cost of impulsive trajectories
we hinted at the connection between the descriptor regula-
tor problem and the analogous one for singularly per-
turbed systems. A descriptor system is obviously the limit-
ing case of a singularly perturbed system, but the relation-
ship between the optimal controls, trajectories, and costs
for the two problems is not so obvious. This is a topic for
further research.
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Other topics for future work include the finite time
problem and the generalized infinite time problem where
the integrand in (1) contains a seminorm. It is cur belief
that both these problems can be solved by using the above
approach in conjunction with slightly different norms on
Ly x L},

APPENDIX

The results of [5] combine with those of this paper to
give a theoretical basis for calculating the optimal feedback
gain Q. In this Appendix we wish to collect all the essential
facts, translate them into matrix terminology, and organize
them into one concise algorithm.

It is assumed that, faced with the abstract results we
have already derived, the reader is capable of writing down
the aforementioned algorithm almost by inspection. Hence,
we will not justify each step of the algorithm, but will take
the correctness of the procedure to be self-evident. Our
intention is mainly to save the reader the organizational
work involved.

The algorithm we will present represents the most
straightforward interpretation of the available abstract re-
sults and is not necessarily the most efficient computa-
tional approach to the problem. The question of computa-
tional efficiency is a topic for further study.

In matrix form, the problem we have considered requires
initial data consisting of a matrix triple (E, 4, B) where E,
AarenXn, Bis nXm, and

A(s) = det(Es — 4) 0.

A pair of positive definite matrices Q,(n X n) and R (m X
m) are also assumed given, determining the cost functional

J(x,u)=j(;°°x(t)’Q,x(t)+u(t)’R,u(t)dt.

Here, the prime indicates the matrix transpose. It is also
assumed that (E, A, B) satisfies the existence conditions of
Theorem 1.

Steps 1)-6) calculate the canonical decomposition of
(E, A, B) as described in [14], [15] and interpreted geomet-
rically in [5].

1) Find the distinct roots A, - -,A, of A(s) and choose
a single number A = A, i=1,---,p. Let r = deg A.

2) (AE — A)"'E has, as its eigenvalues, 0 and 1 /(A —
A), i=1,---,p. Find a complete set of eigenvectors and
generalized eigenvectors {e,,- - -,e,} of (AE — A)™'E with
e, +,e, corresponding to. 1/(A—X,), i=1,---,p and
e, e, corresponding to the eigenvalue 0. It is as-
sumed that the vectors are ordered so that e,,, is an
eigenvector with e, ,,* - -,e,, , its corresponding chain of
generalized eigenvectors. Similarly, e, , ., is an eigenvec-
tor with corresponding chain e, , , ., and so forth up to
the last eigenvector e,,, ... ., ,+1 With chain

er+q,+---+qd_,+2" ) "er+q|+ et qy = en'
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3) Form the vectors

V)= €4
I k-2
+ - i~k — .
b= X (-1 ( k )}‘J e iy J=2000.4
k=0
vil=er+q,+'.'-Fqi—l_’—‘l

j—2 .
k+t{J =2y k-~
Y= E (-—1) ’ (jk )AI * Ze’+‘ﬁ+"'+q.'—|+k+2;
k=0

j=2,.-.’q‘_; i=2’...’d.

4) Apply the similarity transformation

T___[el...er: vll..-vlql: ... : Odlnnuodqd]
to (AE — A)™ 'E yielding
J, 0
T-YNE-4 “ET=[ ! ]
( ) 0 J

where J, is nonsingular with eigenvalues 1/(A — ;) and J,
is upper triangular and nilpotent.

5) Set
Jl——l 0 -1
M= 1 T Y (AE-A4)" .
0 (A, —1)
Then
I,
MET = 0 Lf
MAT = L, 0
- 0 In-—r

where L, = (AJ, ~I)"VJ, and L, =AI— J;'. The vectors
v;; were chosen in such a way that L, is in Jordan form
with d blocks of sizes g,,---,q,. L, has eigenvalues A,
i=1,---,p and L; is nilpotent.

6) Calculate B(r X m) and B,(n —r X m) from

H
MB= B
)
At this point the conditions of Theorem 1 may be checked
to see if the optimization problem has a solution.

Steps 7)-9) generate a feedback gain K| that eliminates
impulses in the system.

7) Construct the d X 4 diagonal matrix

) 0
D= .
0 . ay,
where
a={l ifg,=1
! 0 ifg,>1
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and, after labeling the rows of B,

form the d X m matrix

— G t+4q:
B=

|
LYot +aa |
8) Find an m X d matrix H so that D + B H is nonsingu-
lar. One approach is to apply a pole placement algorithm
to the pair (D, B). The existence condition

ImL,+KerL, +Im B, =F (A1)

also guarantees that the eigenvalue 0 is a controllable mode
of (D, B). A simple alternative approach is provided by the
following algorithm. .

a) Lety be the number of 1’s in D. Obtain a sequence
of row and column interchanges to put D in the form

&l

b) Perform the same row operations on B yielding

B,
B,
where B, isy X m and B, isd — ¢ X m.

c) The Assumption (A.1) also guarantees that B, has
rank d — ¢. Thus, we can find an m X d —  matrix H, that
makes B, H, nonsingular. For example, H, = Bj is one
possibility.

d) Perform the reverse sequence of column operations

on the m X d matrix [0 H,] to obtain H. D + B H must
then be nonsingular, since

TI'# 01 I'Bl1 f‘r‘# BI“Z-‘
+H 2o A=
o oft|5] #170 b

is nonsingular.

9) Form the mXn—r matrix K, by letting its first
column be equal to the first column of H, its (1+ q,)th
column be the second column of H, its (1+¢,+--- +
q;_)th column the ith, etc. This determines d columns of
K. The remaining may be chosen arbitrarily.

10) Repeat the decomposition 1)-6) on the triple

5 2

L, BK,
B,J

s

0 I+BK,
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yielding nonsingular matrices Ty, My such that

O LN N A
“lo L|'*7]o ol
y L, BK, L&k 0
¥lo I+BK|'*X |0 I_,
Bs —BsK
M -1
K[Bf} .fo]

where ry = vank E, Ly is ry Xry, By is ry X m, and By is
n—rgXm.

Steps 11)-16) compute the optimal feedback matrix £,
taking into account the various coordinate changes, so that
£ may be applied directly to the original system.

11) Calculate K,(m X ry) and K,(m X n — ry) from

[0 K/]Tx=[K, K,].

12) To form inner products and adjoint matrices in the
transformed coordinates, obtain positive definite matrices
Qu(ry Xry) and Qp(n—ry Xn—rg) and an rg Xn—rg
matrix Q,, from

an]

Q22

On

I;TQ\TT, = [Qiz

13) Calculate

R=BixQpn By + (1- KZBfK),Rl(I - Kzfo)

N= leBfK + Kle(KzB/K - I)

0=0,,+K{R,K,— NR™'N'

G=L,+ByR'N'.
Q and R are positive definite and (G, B, ) is a stabilizable
pair. @, R, and N are not exactly the matrix representa-
tions of the transformations Q, R, and N introduced in the
body of the paper, but are defined in such a way that
simplifies the calculations for the matrix case.

14) Find the unique positive definite solution Z(ry X ry)
of

SG+G'E~3ByR'ByS+0Q=0.
15) Set
r= e
- B/KR_I(N"‘ Bs’l(z)

and calculate T'f.
16)

Q= (K, +(I- KyBg)R™\(N'— B[ Z)) 1T 'T .

Note that when E = I the entire algorithm reduces to that
for the state-variable case.
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With regard to the example (5), we have

=[0I 41 o] p_[0]
L0 O] LU 1] L1]
Suppose

Ql=[(l) ‘1’] R =1.

Steps 1)-6) need not be carried out for this system since
the subspace S is zero-dimensional. That is, E = L, A=1,
and B = B,. Steps 7)-9) generate (nonuniquely) the matrix

K,=[1 0].
Choosing A = 0, 10) yields
_[-1 1 _[ 11
M"‘[ 0 1]’ T [—1 0]

so the decomposition of the closed-loop system has the
form

where X = T, 'x. This system has no impulses, but is not
optimal.
Steps 11)-16) generate

1 1 1
I N ]|
Applying € to (5) then yields the system
X
X2

. 1 0]
[0 l]xl= 1
0 0llx,

which has the solution

1
22 2

x(t)=e“/§7x02[ ._;/57
where
%=

Hence,

u(t)=—e Vx,,
and

J(x,u)=v2x%,.
Note that

el ][

X02

if x4, = — V2 x,. Thus, there may be a jump discontinuity
in the optimal system trajectory.
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