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ABSTRACT

A deterministic least squares estimation theory of linear time-invariant systems is presented.
It is demonstrated that the well-known Kalman filtering results can be obtained for purely de-
terministic systems with impulsive noises entering into every measurement. Applying known
results from singular optimal control theory, the Kalman filtering results are extended to
cases where some or all measurements may be deemed noise-free.
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1 Introduction

A novel approach to the linear optimal filtering problem was presented by Kalman and Bucy
in the early sixties [1]. The approach commonly known as Kalman filtering generates the
minimum variance estimate of the state of a dynamic system in the face of random noises in
the system and the measurements. However, applications of Kalman filtering in continuous-
time have been mostly limited to systems with nonsingular measurement covariance matrices.
This has posed limitations in cases where some or all measurements may be deemed noise-free.

To alleviate this difficulty with Kalman filtering in noise-free cases, several approaches
have been proposed. For instance, the Luenberger observer theory has been suggested as a
natural alternative. Indeed this has been supported by the stochastic optimal observer theory
where a minimum variance state estimate is obtained by assuming that some or all initial
states are random, [2].

In spite of the interest in stochastic optimal observers, the problem of least squares estima-
tion of systems with some or all noise-free measurements has remained unsolved. Motivated
by this observation, we formulate a deterministic optimal estimation problem whereby not
only the well-known Kalman filtering results are obtained, but also the singular filtering cases
are addressed applying the known results from singular optimal control theory.

2 Problem Formulation and Statement

Consider the completely observable linear time-invariant (LTI) system

ẋ = Ax ; x(0) = x0

(1)

y = Cx + δDw0

where x ∈ Rn, y ∈ Rp, w0 ∈ Rq and δ is the Dirac delta function with support at t = 0. The
triple (A,C,D) is assumed known. Letting ρ[·] denote the rank of a matrix, it is assumed
that ρ[C] = p and 0 ≤ ρ[D] ≤ p. The initial condition x0, and the impulsive noise direction,
w0 are assumed unknown.

In our formulation, we consider estimators of the form

x̂ = H(y)

H : D′+
p → D′+

n

where H belongs to the class of LTI, causal and continuous operators, and D′+
k denotes the

vector space of k-tuples of distributions with support in [0,∞), [3].
It is shown in [4] that this class of operators is precisely the set of convolution operators

with kernels in D′+
n×p. Hence,

x̂ = H ∗ y

where ∗ denotes the convolution operator as defined in [3] and H ∈ D′+
n×p. Under these con-

ditions, we note that our admissible class of estimators includes infinite-dimensional systems;
hence, our formulation is more general than that considered in [2].

Just how well we estimate the state x(t) may be quantified by means of a cost functional
that we define next. Consider the L2-norm squared of the errors incurred in the estimation

of the states normalized relative to the unknown parameter vector ξ0 =

[

x0

w0

]

∈ Rn+q, with



the weighting function f(ξ0); i.e.,

J =

∫

Rn+q

∫

∞

0
eT e dt f(ξ0) dVn+q(ξ0)

e = exp (At)x0 − H ∗ (C exp (At)x0 + δ Dw0) .

Here, f is any nonnegative measurable function on Rn+q and dVn+q(·) is the differential
volume in Rn+q.

The choice of the weighting function f(ξ0) is usually dictated by the nature of the uncer-
tainty ξ0. Here we restrict ourself to uncertainties confined to a weighted euclidean ball of
radius one; i.e., let

f(ξ0) =

{

1 ∀ ξ0 ∈ Ω0

0 otherwise

where
Ω0 = {ξ0 ∈ Rn+q : ξT

0 Σ−1ξ0 ≤ 1}
with Σ a positive definite symmetric matrix. Under these conditions, the cost J reduces to

J = αn,q Tr

∫

∞

0
E Σ11 ET − 2E Σ12D

T HT + HDΣ22D
T HT dt

where
E = exp (At) −H ∗ C exp (At) ,

Σij’s are the partitioned blocks in Σ, and Tr denotes the trace operator. Indeed, this is
verified by observing that

∫

Ω0

ξ0 ξT
0 dVn+q(ξ0) = αn,q Σ

where αn,q is a real positive constant given by

αn,q =
(
√

2π)n+q(det Σ)
1

2

(n + q)(n + q + 2)Γ(n+q
2 )

with Γ(·) being the gamma function (see [5], Section 5.5 for details).
Noting that αn,q is a positive scalar, the cost J can be normalized relative to it without

altering the optimization problem; i.e., write

J = Tr

∫

∞

0
E Σ11 ET − 2 E Σ12D

T HT + HDΣ22D
T HT dt .

We now define the deterministic optimal estimation problem as the task of minimizing
the above cost J relative to H ∈ D′+

n×p, subject to the constraint

E = exp (At) −H ∗ C exp (At) .

3 Duality with Linear Quadratic Optimal Control Problem

Our intention here is to expose a dual relation between the deterministic optimal estimation
problem and the well-known linear quadratic (LQ) optimal control problem. To this end, we
observe the following relablelling

Ã
.
= AT B̃

.
= CT Ũ

.
= −HT

X̃
.
= ET Q

.
= Σ11 N

.
= Σ12D

T

R
.
= DΣ22D

T .



Thus, we have

J = Tr

∫

∞

0
X̃T QX̃ + 2X̃T NŨ + ŨT RŨ dt

where
X̃

.
= exp (Ãt) + exp (Ãt)B̃ ∗ Ũ .

Evidently, solving the optimal control problem

min
Ũ∈D

′+

p×n

J

subject to the constraint imposed on X̃ , is dual to solving the primal optimal estimation
problem. Henceforth, we refer to the above relabellings simply as the duality relations.

It turns out that this problem is related to a problem that we are more familiar with. To
clarify, let x̃T

i0 = [ 0, . . . , 0, 1, 0, . . . , 0 ] where the i-th entry is 1. Also, partition

the matrix Ũ as Ũ =
[

ũ1, ũ2, . . . ũn

]

where ũi ∈ Rp×1. Then, we can write

X̃ =
[

x̃1, x̃2, . . . x̃n

]

where
x̃i = exp (Ãt)x̃i0 + exp (Ãt)B̃ ∗ ũi

for all i = 1, 2, . . . , n. With some matrix algebra, we may write the cost J as

J =
n

∑

i=1

Ji

where

Ji =

∫

∞

0
x̃T

i Q x̃i + 2x̃T
i N ũi + ũT

i R ũi dt

˙̃xi = Ãx̃i + B̃ũi ; x̃i(0) = x̃i0 .

Hence, minimization of J with respect to Ũ can be reduced to minimization of each Ji with
respect to ũi.

In the following, we shall exploit this duality for obtaining a complete set of solutions
to the deterministic optimal estimation problem for the cases where all measurements are
noisy (i.e., ρ[D] = p), and the cases where some or all measurements are noise-free (i.e.,
0 ≤ ρ[D] < p).

4 Regular Case: Completely Noisy Measurements

To present a complete treatment of the deterministic optimal estimation problem, we begin
by considering the so-called regular case; i.e., ρ[D] = p. This corresponds to a cost functional
which is positive definite in the estimation kernel H.

The solution to this case can be readily obtained by invoking the duality with the regu-
lar LQ problem (see e.g., [7]).

Theorem 4.1 For the completely noisy deterministic optimal estimation problem, the opti-

mal E and H are given by

E∗ = exp ((A − L∗C) t)

H∗ = E∗L∗



where

L∗ = (PCT + Σ12D
T ) (DΣ22D

T )−1

and P ∈ Rn×n is the unique positive definite symmetric solution of

AP + PAT − (PCT + Σ12 DT ) (DΣ22 DT )−1 (PCT + Σ12 DT )T + Σ11 = 0 .

Moreover, the optimal cost is J = Tr P .

Proof: The proof follows by invoking duality with LQ optimal control problem (see e.g.,
Chapter 3 in [7]). Q.E.D.

In view of the above result, a dynamic state estimator system corresponding to H∗ is
realized by

˙̂x = Ax̂ + L∗ (y − Cx̂) ; x̂(0) = 0 .

Note that this system has the structure of a full-order Luenberger observer where the observer
gain matrix L∗ is obtained by solving a full-order algebraic Riccati equation for P .

5 Singular Case: Partially Noise-Free Measurements

This section considers the partially singular deterministic optimal estimation problem; i.e.,
0 < ρ[D] < p. This case is characterized by a cost functional which is partially singular in
the estimation kernel H.

Consider the system (1) with the assumption that D has rank p1 < p, p1 6= 0 and that
C and D are already in the form

C =

[

C11 C12

0 Ip2

]

D =

[

D1

0

]

with D1 ∈ Rp1×q and p = p1 + p2. Note that since C has full rank and D is of rank
p1, the required forms for C and D can always be achieved with an appropriate similarity
transformation and a suitable coordinate change on y.

Recall that the cost functional is given by

J = Tr

∫

∞

0
E Σ11 ET − 2E Σ12D

T HT + HDΣ22D
T HT dt .

Denote DΣ22D
T by W and note that by our assumption on D,

W =

[

W11 0
0 0

]

≥ 0

where W11
.
= D1Σ22D

T
1 > 0. Before we present our main result, we need some preliminaries.

It is convenient to eliminate the cross-term in the cost by introducing a suitable transfor-
mation on H. To this end, we partition H as

H =
[

H1 H2

]

where H1 ∈ D′+
n×p1

, H2 ∈ D′+
n×p2

. Then we introduce the transformation

H̃1 = H1 − E Σ12 DT
1 W−1

11

H̃2 = H2 .



It is readily verified that

J = Tr

∫

∞

0
EV ET + H̃W H̃T dt

E = exp (Â) − H̃ ∗ C exp (Â)

where

H̃ =
[

H̃1 H̃2

]

V = Σ11 − Σ12 DT
1 W−1

11 D1 ΣT
12

Â =

[

A11 − Σ12,1 DT
1 W−1

11 C11 A12 − Σ12,1 DT
1 W−1

11 C12

A21 − Σ12,2 DT
1 W−1

11 C11 A22 − Σ12,2 DT
1 W−1

11 C12

]

and Σ12 =

[

Σ12,1

Σ12,2

]

. Note that in the expression for Â, we have partitioned the matrix A

into 4 blocks such that A11 ∈ R(n−p2)×(n−p2), A22 ∈ Rp2×p2 . Partitioning the matrix V into 4
blocks such that V11 and V22 have identical dimensions to those of A11 and A22, respectively,
we have

Theorem 5.1 For the partially singular deterministic optimal estimation problem, the opti-

mal E and H are given by

E∗ =

[

exp (Ast) exp (Ast)Θs

0 0

]

H∗ = E∗Ls + δLf

where

As = A11 − (P1C
T
s + Ms)W

−1
s Cs

Ms =
[

V12 Σ12,1D
T
1

]

Cs =

[

A21 − Σ12,2D
T
1 W−1

11 C11

C11

]

Ws =

[

V22 0
0 W11

]

P1 ∈ R(n−p2)×(n−p2) is the unique positive definite symmetric solution of

A11P1 + P1A
T
11 − (P1C

T
s + Ms)W

−1
s (P1C

T
s + Ms)

T + Πs = 0

Πs = V11 − V12V
−1
22 V T

12 .

and

Ls =

[

L11s L12s

L21s 0

]

L11s = (P1C
T
11 + Σ12,1D

T
1 )W−1

11

L12s = −P1C
T
11W

−1
11 C12 + A12 + ΘsA22

−AsΘs − (Σ12,1 + ΘsΣ12,2)D
T
1 W−1

11 C12

L21s = Σ12,2D
T
1 W−1

11

Lf =

[

0 −Θs

0 Ip2

]

Θs = −(P1(A21 − Σ12,2D
T
1 W−1

11 C11)
T + V12)V

−1
22 .



Moreover, the optimal cost is J ∗ = Tr P1.

Proof: The proof follows by invoking duality with the singular LQ optimal control problem
and the results presented in [6]. Q.E.D.

In view of this theorem, a dynamic state estimator system corresponding to H∗ is realized
by

ż = Asz + Esy ; z(0) = 0

x̂ = Gsz + Lfy

where z ∈ Rn−p2 and

Es =
[

E1s E2s

]

E1s = L11s + ΘsL21s

E2s = L12s

Gs =

[

In−p2

0

]

.

It is easily recognize that this system has the structure of a reduced-order observer where the
triple (As, Es, Lf ) are computed by solving a reduced-order algebraic Riccati equation for P1.

6 Singular Case: Totally Noise-Free Measurements

In this section, we consider the totally singular deterministic optimal estimation problem;
i.e., D = 0. This case is identified with a cost functional which is totally singular in the
estimation kernel H.

Consider the system (1) with the assumption that C has already been transformed into

the form C =
[

0 Ip

]

. Note that any C which has full rank can always be transformed to

this form with an appropriate similarity transformation.
Under these conditions, the cost functional is given by

J = Tr

∫

∞

0
E V ET dt

where
E = exp (At) −H ∗ C exp (At)

and V
.
= Σ11. To present our result, we need to partition the matrices A and V into 4 blocks

such that A11, V11 ∈ R(n−p)×(n−p) and A22, V22 ∈ Rp×p . Then we have

Theorem 6.1 For the totally singular deterministic optimal estimation problem, the optimal

E and H are given by

E∗ =

[

exp (Ast) exp (Ast)Θs

0 0

]

H∗ = E∗Ls + δLf

where

As = A11 + ΘsA21

Θs = −(P1A
T
21 + V12)V

−1
22



P1 ∈ R(n−p)×(n−p) is the unique positive definite symmetric solution of

A11P1 + P1A
T
11 − (P1A

T
21 + V12)V

−1
22 (P1A

T
12 + V12)

T + V11 = 0

and

Ls =

[

L1s

0

]

L1s = A12 + ΘsA22 − AsΘs

Lf =

[

−Θs

Ip

]

.

Moreover, the optimal cost is given by J ∗ = Tr P1.

Proof: Again the proof follows by invoking the duality with LQ optimal control problem
and applying the known results presented in [6].

In view of this theorem, a dynamic state estimator system corresponding to H∗ is realized
by

ż = Asz + L1sy ; z(0) = 0

x̂ = Gsz + Lfy

where z ∈ Rn−p and

Gs =

[

In−p

0

]

.

It is easily recognized that this system has the structure of a minimal-order observer where
the triple (As, L1s, Lf ) are computed by solving a reduced-order algebraic Riccati equation
for P1.

7 Conclusion

We have formulated and solved a deterministic optimal state estimation problem of LTI
systems with completely noisy, partially noise-free, and totally noise-free measurements, using
the method of least squares. In each case, it is shown that the optimal estimator has the
structure of a Luenberger observer where the gains are computed by solving a corresponding
full-order, reduced-order, and minimal-order algebraic Riccati equation.
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