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Abstract. A geometric decomposition is developed for linear, time-invariant singularly
perturbed systems of a general form. The decomposition is shown to be determined
by a mapping d between two real analytic manifolds, the range of d being a manifold
of canonical forms. Our main result establishes analyticity of d over its entire domain.

1. Introduction

We are interested in structural properties of autonomous singularly perturbed
systems with external control:

-’21 = fl(xnxzsu)
€))

&, = Ja(xi,x2,u)

Here, f, and f, are vector-valued. The literature dealing with such systems
is vast (e.g. [1]-[4]) even when attention is restricted to the case of linear
JS1 and f,. In this case, (1) may be rewritten

)2'1 = Anxl -+ A12X2 + Blu

)
X, = AnX, + Anx, + Byu

where the A’s and B’s are matrices.

Recently, a great deal of interest has been generated, especially in the field
of control theory, by the “singular” system formed by setting ¢ = 0 in (1)
or (2) ([5] - [9]). In the linear case, much of this work has been based on
the Weierstrass decomposition for regular pencils as presented in Gantmacher
[10]. The decomposition involves a nonsingular coordinate change applied
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to (2) with ¢ = 0, yielding two subsystems

X. = Ax. + Bu (3a)
Af.if = Xf + B_fu (3b)

where A, is nilpotent. The subscripts s and f refer to the singular perturba-
tion terms “slow” and “fast.” As demonstrated in [10], subsystem (3b) con-
tains all the “singular” behavior inherent in (3).

A natural question to ask is whether the Weiersrass decomposition can
be extended to (2) or even (1). In other words, can an inveriible coordinate
change depending smoothly on ¢ be found such that, when applied to a
singularly perturbed system, a complete decomposition results with one sub-
system containing all regular behavior and the other containing all singular
behavior and with all matrices depending smoothly on ¢? A complete answer
to this is not known even in a local sense for the general nonlinear case (1).
However, an affirmative answer has been obtained for the linear system (2).
The problem was first posed in [11] where we showed that a parameterized
system of the form

E(e)x = A(e) + B(e)u “@

where the matrices E, A, and B are continuous in e at a given point ¢,, can
be decomposed as in (3) such that 4,, A,, B,, and B, all depend on ¢ and
are continuous at €,. Later, in [12] it was further shown that analyticity in
(4) with respect to e implies analyticity in (3). One of the goals of this paper
is to show that any degree of smoothness carries over from (4) into (3). (This
will be seen to follow almost immediately from analyticity.)

The main issue we will address is that of the coordinate-free or geometric
setting for the decompositon of (4). Our results in [11] were presented in
geometric terms while those of [12] were not. It is our aim to develop a
coordinate-free decomposition of (4) analogous to that of [12], thus extend-
ing the results of [11]. An advantage of the geometric setting is that we will
be able to prove uniqueness of the decompositon —a result which is untrue
in the coordinate-dependent context (see [10]).

2. Preliminaries

All Euclidean spaces considered are assumed to be real inner product spaces
with norms defined by llxll? = < x, x> . The class of linear systems under
investigation consists of all those of the form

Ex = Ax + Bu
®)
y = Cx
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where E, A : R* ”R", B: R™ "R, C: R* R are linear with

det sSE—A) =0 6)

Condition (6) is necessary and sufficient for existence and uniqueness of solu-
tions in (8) and determines the complement of an algebraic variety. Thus
we are actually dealing with the set of all (E, A, B, C) in an open, dense subset
Of Rn(2n+m+p) .

Let0<r=<nandI' C Cbe arectifiable Jordan curve encircling the origin.
To construct a smooth decomposition of (5) we need to further restrict at-
tention to

= [(E,A,B,C) € Rrtzntmte) | det (sE — A) has exactly r roots
(counting multiplicities) encircled by I‘}

Since I" encloses an open set and the roots of det (s£ ~ A) are continuous
functions of E and A (see [11]), X is open. Hence ¥ is a real analytic manifold
of dimension n(2n+ m + p). Our aim is to extend the decomposition (3)
smoothly over ¥ by letting I" determine an eigenspace decomposition of R".
But first we need some additional constructions.

3. A manifold of canonical forms

In this section we develop an analytic manifold, each point corresponding
to a decomposed form (3). The differentiable structure of the manifold will
determine smooth variation of decomposing subspaces S @ F = R” and the
operators A,, A, B,, ...

As a first step, let 0 < k < n and

= {(W,X,Y,2) | W e R™, X ¢ R®,Y € R, 7 € R*,
W has full rank}

Any nonsingular 7 € R¥ determines a free group action on A, given by
(W, X,Y,Z) ~(WT, T-* XT, T'Y, ZT)

This in turn yields a quotient set A ko
Proposition 1. Zk is a real analytic manifold of dimension k(n+ m+ p).

Proof. Our approach is to generalize the standard Grassman manifold

develanmant fcae 11AN Change {7 Y V 7N £ A W hae b linan
ULYCIUPIGCIIL \OCC [aq]). LLOUBC I , 0y X, 45 T QOg. 77 1145 A LTICA

dent rows e,,...,e, so we may define
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T then takes (W,X,Y,Z) into a representative of the equivalence class
[W,X,Y,Z]. A chart may be defined accordingly onto an open subset of
R*(=+m+p) For example, if e,,...,e, are the first kK rows of W, we have the
representative

A

1 A A A
(WT, T XT,T-'Y, ZT) = ( { } , X, Y,Z)
w

A A

where I?V, X, Y, and Z may take on any values. This defines a chart
¢.: U, = RE+m*2) according to

~ -~

[W,X,Y,Z)~(W,X,Y,Z)

where U, consists of all points in A, where e,, ..., e, are linearly indepen-
dent. By selecting different sets of k rows, domains U, are generated which
cover A.. Any two charts ¢, and ¢, determine a change of coordinates
¢;' o ¢, on U, N V, which is a rational function and hence analytic.

To complete the construction, consider the set of all 8-tuples n =
(S,A4,,B,,C,,F,A;,B;, C;) where S, F C R*are subspaces with dimensions
rand n —r, respectively,and A,: S~ S,B,:R*"~S,C,: S~Rr, A,: F~F,
B;: R™~F, and C;: F~R” are linear. Let

C={n|SNF=0],

Proposition 2. C is an open, dense submanifold of A , X A n—r With dimen-
sion (n+ m + p).

Proof. Each equivalence class [W,X,Y,Z] € A, determines uniquely a k-
dimensional subspace Im# C R". All K-dimensional subspaces are obtained
in this way. For each representative (W, X, Y, Z) the columns of W are basis
vectors for ImW and X, Y, and Z are matrix representations of some linear
operators A, B, and C with respect to those vectors and some fixed bases
in R™ and R?, We need to show that any other representative (W, X, Y, Z)
of the same equivalence class gives rise to the same operators; then € can
be naturally embedded into A, X A,_,. To do this, note that any two represen-
tatives determine a nonsingular T with W = WT. Then, with respect to the
columns of W, A has matrix representation 7' X7 = X, Bhas matrix 7°'Y
= Y,and Chas ZT = Z.
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From the construction of A, it is clear that A, X A,., inherits quotient set
topology from A, X A,., in which

det[ W W] # 0]

= {(11,?7) €A, X A,

is open. Hence, A consists precisely of those points where Im/# N Im W = 0.
Thus € is open. Furthermore, € has the same dimension as A, X A,-, which
equals

r(n+m+p) + (n—r)(n+m+p) = n{n+m+p)
Finally, density of @ follows immediately from density of Ain A, X A,-,.

As pointed out in the proof of Proposition 2, each (W, X, Y,Z) € A, uni-
quely determines a subspace and three operators acting on that subspace.
Furthermore, any two points in A, are equivalent if and only if they repre-
sent the same subspaces and operator triples. Thus, for example, C
distingunishes state-space systems (R, A;, B,, C;,0,0,0,0); i =1, 2 as
long as (A,, B,, C,) # (A,, B,, C,).

C may be mterpreted asa mamfold of canonical forms. Each point =
(S, A,, ...,C;) determines a subspace decomposition S @ F = R*and a cor-
responding system (3). Thus each 5 € € represents points in £ in a natural
way. In section 4 we will show that this correspondance is analytic; but first

we offer a result which gives an alternative description of the topology of €.
Proposition 3. C is metrizable.

Proof. We base our construction on the “opening” metric on the Grassman
manifold G.(R") (see [13]): For k-dimensional subspaces R,S C R” define

QG(R’S) = ” Pr— Py “

X€R yeS

= max sup inf|jx —y|}, sup 1nf||x y]]}
Ixl =1 II}'II 1

where P, and P; are orthogonal projection operators. For any subspaces
K C R/, L C R¥and linear F: K =~ L we also need to consider the minimum
norm extension

w(F) : R" > R*

Fxifxe K
w(F)x =
0ifxeK+

defined by
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It is easy to verify that
Q((SlyAslalev--sCfl)s (SZ"'HCfZ))
= 04(81,82) = QU(F,, Fy) = [w(d.) —u(An)
+ [u(An) — w(Ap)| +--+ [6(Cs) = w(Cp)|
defines a metric on C.

It remains to show that g induces manifold topology on €. Consider any
sequence 4, =4 = (S, A,, ..., C;) in manifoid topoiogy. Then correspon-
ding to the 7, is a convergent sequence of representatives S(W,, X, Y, Z,).
Let

[eu s e'_j] = Wj
For each e € R
ste = Y1;€1; + e 4 Yri€ry

where the v,; are defined by

<e,j,€”> s <e|j,e,,~> Yy <e,el,->

<e,,-,elj> o <e,j,ey_;> Yri <e,e,j>
The Gram matrix converges and is nonsingular; hence, v,;, ..., 7., converge
and P, = Ps. Similarly, Py, = Pr.
To prove convergence of u(A,;) note that x;, = x and let

aly ... ofy

(X:j o o0 a;j
If (v, ..., V.-,) is a given basis for S+ and
Vi = st'L vi=( ~ st)vi

then, v;; = v, and, for sufficiently large j, (vy;, ..., V.-.,;) is @ basis for S,‘L .
Thus, for any e € R

e = Bljelj + o+ Brjerj + Brn,jvlj + -+ anvn—r,j
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with B,; = B, for every i. Hence

r
,“(As,)e = E BiyAsey
i=1
r r
- ¥ L buaten
i=1 k=1
r r
LT bt
i=1 k=1

= u(A,)e
Treating B,,, C,;, ..., Cy, similarly yields o(7,,9) ~O0.

Conversely, suppose g(7;,7) = 0 and let (e, ..., e,) be a basis for S. Then
Ps, ~ Ps implies that S, has a basis given by

€y = stei -e;
Let W, = [ey; ... e,;]. We also have u(A4,,) = n(A4,) so if we let

1
O3; ... Oy

o :j PR a:,
and observe that

a',,e,j + - 4+ ozi,e,j = ﬂ(As:‘)e,'j
_’M(A:)ei

it follows that X; -~ X. Convergent Y, Z;,... can be defined similarly. Thus
n; has a convergent representative sequence in A, X A,.,. Since manifold
topology is just quotient set topology, 1, = 4.

As a final comment concerning the topology of €, we note that small varia-
tions on € correspond to small variations in the matrix representations of
A,, Ay, ... with respect to an appropriate basis. Indeed, let IT be a manifold
and select a parametrization IT~ €, both with some given degree of
smoothness. Then, from the construction in the proofs of Propositions 1
and 2, on a sufficiently small neighborhood in € we can choose bases of
S and F for each point in such a way that small variations in IT correspond
to small variations in those basis vectors. Furthermore, the resulting matrix
representations of A,, A,, ... also undergo only small changes.
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We have, therefore, three different characterizations of the topology of
©: We may alternatively view it as manifold topology, a metric topology,
or a quotient set topology on the space of bases and matrix representations.
These same points of view carry over to the decomposed system (3).

4. Main decomposition results

We are now ready to establish the coordinate-free analytic decomposition
theorem for a parametrized system. Actually, we leave until the next section
the task of showing that all degrees of smoothness carry over from a system
into its decomposed form; for now we will be content with identifying the
parameter space IT with the system space £ and taking the parametrization
y: II = X to be the identity map. The main theorem describes an analytic
map d: ¥ - C which takes each system into a form (3). Analyticity of d
guarantees that the parameterized decomposition d © ¢ is also analytic.
We need one preliminary result.

Lemma. If det (sE—A) = ¢ ITk, (s—N\;) and \ € C is such that \E— A
is non-singular, then
, 1

det(sI — WE—A)'E) = s * H(s - —).
=1 A=\

Proof. For s =0 and E singular the result is obvious. For s =0 and E non-
singular, X = »n and

det(—(AE—A Y'E) = (- D)*det(\[ - E*4A)™
2 1

= —_ 1 n ——

(-1 .Y

i=1

since det(sE — A) = det E det(sI —E'A).

Finally, for s # 0.

1
o det(OE~A) — SE)

det(s]-(NE—~A)1'E) = GO E—A)

(a det(\ — DE-4)
det(\E — A)
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k
oTIO - - =20
n i=1

¢ N =N\)
i

i=

Decomposition Theorem.
(1) There exist unique maps d: L = C and M: £ ~ R"* such that for each
£E=(E,A,B,C)e L.
(@) S and F are both M(£)E — and M(§)A — invariant
(b) M(HE|S =1
© M@®HA|F=1
d M($A|S = A,
@ MEHE|F = A,
(f) the eignevalues of A, are encircled by T
(&) PseM(£)B = B,
(h) PrsM(§)B = By
@ Cc|s=cC,
@ ClF=c¢
where d(¢) = (S, A,, B,, C,, F, A;, By, Cy).

(2) As defined in (1), d and M are analytic and for each £ ¢ X
(@) M(§&) is nonsingular
(b) det M(&) det(sE— A) = det(s] —A)det(As— 1)
(¢) if det (sE — A) has degree r, A; is nilpotent.

Proof. (1) Suppose that det(sE — A) has k roots Ay, ..., A\, Where k = r and
let the roots be indexed so that A,, ..., N\, are encircled by I'. Define

S = Ker H (ME—A)'E — _1_1)

i=1 i

k
F = Ker((AE ~ A)E)* [] (AE—-A)"E - )\_1_)_\_ n

i=r+1

where A € T
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Then S @ F = R” and both subspaces are (\E — A)'E — invariant.
In order to construct M(¥), let

Ji = (NE-A)E|S

J. = \E—A)"E | F

Then
d 1
det(sl— J,) = § - ——
(sT— 1) H ==
u 1
det(sI - J,) = s"* H (s — ———)
i=r+1 )"'>\i

Hence J, is invertible and N\J, — I has n — k eigenvalues at negative unity and
k eigenvalues at

)
ey Y

Since \, lies outside I' for i = r+1,..., k and I encircles the origin, AJ, — I
is also invertible. Define a linear transformation M on R" by

. Jilx ifxeS
Mx =

=D 'x ifxeF
and let M(£) = M(\E—A)". From the construction and the fact that
MNE—-A)7*A = NANE-A)'E ~ 1T
we have M(£)E — and M(£)A —invariance of S and F with
M(:)E|S = MO\E~A)"E|S = I
anu
M(£)A |F = MO\NE—A)"A |F = I.

If we simply define 4, and A, as in (d) and (e), (f) follows, since
A, = Ji*(A\J; —I) has eigenvalues

1
A=ANN(—— =D =k; i=1,..,r
M=M= = D
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We may also define B,, B,, C,, and C; as in (g) — ().

To prove uniqueness, suppose M(¥), S, and F are given satisfying (a)-(f).
Then S and Fare \E — A)'E = AM(§)E — M(§)A)*M(§¢)E — invariant.
Further, suppose

$ # § = Ker [] (WE-A)"E - X—l_x_

i=1

S and S must have the same dimension so there exists x ¢ S whose minimal
polynomial with respect to (\E — A)~* does not divide II;., (s — )
(see [10]). But, from (b) and (d), AN

det(sI — \E—A)E | §) = det(sI— (\[—A,)™)

YT 1
—£I(s e

1

which yields a contradiction. A similar contradiction can be derived by
assuming

k
F # Ker(WE—~A)*E)~* ] (MAE-A)"E - - 1)\ )

i=r+1 ¢

To see uniqueness of M (&), observe that

(NE—-A)'ES =S
and
ANE—~A)'AF = F
s0
ES © AF = R”
and (b) and (c) determine M(£). Uniqueness of 4,, ..., C;then follows directly
from (d), (e), and {g)-(j).

(2) Nonsingularity of M(£) follows immediately from its definition. Part (b)
is obvious from (1b)-(le). If £k =r then J, is nilpotent and so is

A/ = (}\JZ—I)_IJz
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It remains to show analyticity of d and M. Since \,, ..., \, are encircled

Lo, TV aemd ) N\ arn st
Oy L and A4z, ..., Ap are not,

S

Im § (sT—A,)'ds & Im ¢ (s4,—I)'ds
r r

Im § (SME — MA)™ds
r

Im § (sE ~ A)ds
r

Let

- (OB A N1
W = §(sE~A)ds

eon

The columns of W are analytic functions on all of I'. If we let

W=4§ (sA—E)*ds
ir
where 1/T consists of all points reciprocal to those in I', we have F = ImW
and the columns of W are analytic on . Let

N=[WW],

From (1b) and (1¢), the first r columns of M~'N are just those of EN and
the last n — r are those of AN. Hence M™ and, therefore, M are analytic
on X. Defining X to be the matrix representation of A, with respect to the
columns of W, we have

“MAN = [ X 0
N MAN_[O 1]

so Xis analyticon X. Y, Z, ... can be handled similarly. Since (W, X, Y,...)
is analytic on X, so is its induced map d into the quotient set C.

5. Parametrizations

We can now show that our results yield invariance with respect to any degree
of smoothness. If T" and r are chosen, X is well defined and we may select
a parameter manifold IT and a map ¢: I1 = T, both with some given degree
of smoothness. { determines a parameterized system and d o ¥ its decom-
posed form. Since d is analytic, d o ¥ must have the same degree of
smoothness as . For example, let w, € IT be such that det(sE(wo) — A(wo))
has exactly r roots, all encircled by I", where

¥(wo) = (E(wo), A(wo), B(ws), C(wo))
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Similarly, for each w ¢ IT we have a system
E(w)x = A{w)x + B{w)u
V{w):
y = C(w)x

where (w) has order at least 7. The decomposition theorem gives the unique
canonical form

-

x, = Adw)x. + Bw)u

d(w): Afw) ¥, = X, + Bw)u

y = Cw)x, + CHw)x,

corresponding to the subspace decomposition
S(w) ® F(w) = R"

Note that according to part (2¢) of the theorem, A (w,) is nilpotent.

All maps associated with d(y(w)) must have the same degree of smoothness
as do E, A, B, and C. In matrix terms, if any bases are chosen for S(w) and
F(w), depending smoothly on w, the matrix representations of 4.(w), A/(w),
... must also vary smoothly with w.

6. Conclusions

We have shown that existing smooth decomposition theorems for linear
singularly preturbed systems can be generalized to account for all degrees
of smoothness. This has been accomplished in a coordinate-free context. One
advantage of the approach is that we have proven uniqueness of the canonical
form — a result hitherto unestablished.

In a future publication we intend to show that by identifying “equivalent”
system in I, a quotient manifold results which is diffeomorphic to the im-
age of d. Hence, the space of canonical forms may be arrived at by two
equivalent methods.

It is hoped that our work in the area will eventually lead to more insight
into nonlinear singular perturbation problems.
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