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Abstract

Oversized waveguide tapers are frequently used to
gradually change the waveguide cross section in transmission
systems for microwave and millimeter-wave sources. In this
paper we introduce the use of a new methodology, namely
the Pontryagin Minimum Principle, for optimal design of
radius profiles of such overmoded tapers. We discuss the
existence of optimal solutions. We present an optimal taper
design for the case of a TE(, mode in a circular waveguide
at 60 GHz.

The Pontryagin Minimum Principle

The Minimum Principle [1], [2] is a generalization of the
calculus of variations, and is used in optimal control theory
for optimal-system designs. In this context, the coupled
mode equations describing the interaction of modes in a
varying-radius waveguide taper [3] can be viewed as state
equations of our device. In our search for the optimal
solution, we can use the necessary conditions required by the
Minimum Principle to isolate the admissible solutions that are
candidates for optimality. 'The Minimum Principle is
somewhat similar to the condition that the derivative vanishes
at the local minima of an ordinary function. The Minimum
Principle reduces the optimal design problem to the solutions
of a system of differential equations with two-point boundary
conditions.

Optimal Taper Design Problem

Our goal is to design a tapered overmoded circular
waveguide with a given initial radius a,, final radius a,, and
length [ excited by a single mode. We assume that the
waveguide is straight at both the input and output, i.e.,
a’(z=0) = a’(z=I) = 0, where a(z) is the radius profile of the
taper and a’(z) is its first derivative respect to z. Here, z is
the coordinate axis along the waveguide. We neglect the
backward coupled modes, and consider the optimal design for
the case where modes involved are all above cutoff
throughout the taper. We denote by ¢(z) the total power in
the spurious modes. Our optimal problem is then to obtain
the radius profile a(z), from the class of functions with
piecewise continuous second derivatives, that minimizes the
total power in the spurious modes at the output, i.c., the
radius profile which minimizes the cost function, J, given by
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Discussion of the Optimal Solution

We have shown that, for the above stated problem there
does not exist a minimizing solution that satisfies all the
necessary conditions that are required by the Minimum
Principle. The problem above is in the category of singular
optimization problems. This is because the necessary
condition that the Hamiltonian function is minimized along
the optimal trajectory (optimal a(z)) does not provide us with
a well defined expression for the optimal control function,
u(z). (We have chosen u(z) = a”(z), the second derivative of
the radius function which is related to the axial curvature of
the waveguide radius, to be our control function.) On more
intuitive ground, the above optimal design problem is a
singular optimization problem because no upper bound has
been placed on the size of the guide radius. Hence, the
waveguide radius could become infinitely large.

However, we can modify the design problem such that it
is a regular optimization problem. To this end, we choose
the cost function as
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where ¢ is a fixed positive small parameter. So our problem
now is to obtain a profile a(z) that, for a given €, minimizes
the above cost function. The integral term above can be
interpreted to be related to the total integrated square of the
curvature of radius profile. This integral term places a soft
constraint on @”. The solutions of the resulting system of
differential equations with two-point boundary conditions
correspond to the minima of J.

An Optimal Design for a TEy, Circular
Waveguide Taper at 60 GHz

Here, we present an optimal design for a downtaper
excited by the TEy, mode at 60 GHz with the following
parameters: a; = 3.175 c¢m, a5 = 1.389 cm, and / = 40 cm.
In Fig. 1, the optimal radius profiles corresponding to
different values of € have been plotied. The cost function J
given by (2) and the output power in the spurious TEj; mode
defined by ¢(!) are plotted in Fig. 2. The power contents of
the TEy,; and TEg, modes along the optimal tapers are plotted
in Fig. 3. Figure 1 illustrates that the optimal radius profiles
converge uniformly to a radius function as € approaches zero.
In fact, there is a negligible difference in optimal radius
profiles for & smaller than 7.0x10”7. Hence, although the



singular problem with the cost function (1) does not have a
minimizing solution, the regular optimal problem has a well-
behaved solution even in the limit as € approaches zero. As
seen from Fig. 2, the power in the TE,; spurious mode at the
output is ver?' small for small values of €. For instance, for
€ = 1.0x107'9, ¢(/) is about 1.1x10~1° for unit TE, input
power. However, we can argue by contradiction that ¢(/)
will not be zero. If ¢(!) =0, and since ¢(J) is bounded below
by zero, it will indicate that we have achieved the optimal
solution for the singular problem. However, as stated before,
the singular problem does not have a minimizing solution.
Therefore, we believe that as € approaches zero, ¢(/)
approaches its infimum (greatest lower bound), a small
positive number, whlch from Fig. 2 can be predicted to be in
the order of 1.0x10'1°

There may be more than one solution u(z) that satisfies
all the necessary conditions of the Minimum Principle. These
solutions locally minimize the cost function J. The global
optimal solution is the u(z), from these local solutions, that
gives the smallest value for J. In our computer simulation
for the optimal TEy, taper design, we have found one
solution for a(z) for each &.

In this study we have included only one spurious mode.
Including more than one spurious mode is a straightforward
procedure, and does not change the above conclusions.

The coupled mode equations (state equations) are valid
only for a slowly varying waveguide. As seen in Fig. 2, the
optimal radius profiles corresponding to different € change
gradually along the z axis . Here, the maximum slope and
the maximum axial curvature of the optimal tapers are all
within the range of validity of the coupled mode equations
that the optimal design procedure was based on.

The Minimum Principle can also be used to minimize the
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Fig. 1. The optimal radius profiles for a downtaper

excited by a TEy, mode at 60 GHz with a;=3.175 cm,
a,=1.389 cm, and /=40 cm. For each € the corresponding
profile minimizes the cost function J given by (2).

length as well as the output power level of the spurious
modes.
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Fig. 2. Plot of the cost function J given by (2) and ¢(/),
the output power in the spurious TEj, mode, versus .
Both axes are in logarithmic scale.
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Fig. 3. Plot of the power contents of the incident TE,
and the spurious TE;, modes along the optimal tapers.



