THE MINIMAL DIMENSION OF STABLE FACES REQUIRED TO GUARANTEE STABILITY OF A MATRIX POLYTOPE: D-STABILITY¹

J. Daniel Cobb

Department of Electrical and Computer Engineering University of Wisconsin-Madison 1415 Johnson Drive Madison, WI 53706-1691

<u>Abstract</u>

We consider the problem of determining whether a polytope $\mathcal P$ of n×n matrices is D-stable — i.e. whether each point in $\mathcal P$ has all its eigenvalues in a given nonempty, open, convex, conjugate-symmetric subset D of the complex plane. Our approach is to check D-stability of certain faces of $\mathcal P$. In particular, for each D and n we determine the smallest integer m such that D-stability of every m-dimensional face guarantees D-stability of $\mathcal P$.

1. Introduction

Let $D\subset \mathbb{C}$ be nonempty, open, convex, and conjugate-symmetric (symmetric about the real axis), and define an n×n real matrix M to be D-stable if each eigenvalue λ of M satisfies $\lambda\subset D$; otherwise, M is D-unstable. We consider the problem of determining whether certain subsets of $\mathbb{R}^{n\times n}$ consist entirely of D-stable matrices. To facilitate discussion we begin with some definitions.

A (convex) <u>polytope</u> \mathcal{P} in a vector space V is the convex hull $conv(\Omega)$ of any nonempty finite subset $\Omega \subset V$. The <u>dimension</u> of \mathcal{P} is the dimension of the affine hull aff(\mathcal{P}) of \mathcal{P} . A <u>face</u> of \mathcal{P} is any set of the form $\Pi \cap \mathcal{P}$, where Π is a supporting hyperplane of \mathcal{P} . Finally, a <u>k-dimensional half-plane</u> in V is any nonempty set of the form $\mathcal{H}=R\cap S$, where R is a closed half-space, S is a k-dimensional affine subspace, and $S \not\subset R$. (Note that this implies that $aff(\mathcal{H})$ is simply S.)

In the robust control literature, considerable interest has been generated by the problem of determining whether a family of linear systems can be shown to consist entirely of D-stable systems by checking D-stability of certain representative members of that family. In many cases, such problems can be reduced to that of determining whether a polytope or other subset of \mathbb{R}^n or $\mathbb{R}^{n\times n}$ consists entirely of D-stable points [1],[2]. (D-stability of a vector $\mathbf{x} \in \mathbb{R}^n$ means simply that the polynomial $\mathbf{s}^n + \mathbf{x}_n \mathbf{s}^n + \ldots + \mathbf{x}_1$ has all its roots in D.) We are primarily interested in the technique of checking D-stability of lower dimensional faces of a polytope in order to guarantee D-stability of the entire set.

Most "facial" results pertain to continuous-time (CT) stability — i.e. where D is the open left half complex plane. The seminal result [3] for polynomial polytopes motivates the approach. In [3] it is shown that a polynomial polytope of a particular simple structure (an "interval polynomial") is CT stable whenever four specially constructed vertices are CT stable. A more recent result [1] demonstrates that, for an arbitrary polynomial polytope, checking all edges is sufficient to guarantee CT stability. With respect to polytopes in R^{n×n}, is has been shown [4] that 1) an arbitrary polytope is CT stable if all (2n-4)-dimensional faces are CT stable and 2) there exist CT unstable polytopes such that all

(2n-5)-dimensional faces are CT stable; hence, the value 2n-4 is minimal. In this paper we extend the results of [4] to D-stability where D may be any nonempty, open, convex, conjugate-symmetric subset of

We note that for the cases n=0 and n=1 our problem has a trivial solution: D-stability of vertices guarantees D-stability of the polytope. To handle $n\ge 2$ we need to partition the family of stability sets D according to the following two assumptions.

Assumption A: D is of the form $D=\{s\in \mathbb{C} \mid a< Re \ s < b\}$, where $-\infty \le a < b \le \infty$.

Assumption B: D is a nonempty, open, convex, conjugate-symmetric set not satisfying Assumption A.

In addition, we define $m_A(n) = \begin{cases} 1, & n=2 \\ 2n-4, & n>2 \end{cases}$ and $m_B(n) = 2n-2$. We intend to show that m_A and m_B are the values of m that we seek for cases A and B.

2. Sufficiency of m and m

Throughout our analysis, we will make extensive use of the fact that any affine, one-to-one map $f:\mathbb{R}^k \to \mathbb{R}^{n^2}$ determines an affine isomorphism between \mathbb{R}^k and $f(\mathbb{R}^k)$. Among other things, this implies that, for any polytope $\mathcal{P} \subset \mathbb{R}^k$, $f(\mathcal{P})$ is also a polytope of the same dimension as \mathcal{P} : furthermore, f sets up a one-to-one correspondence between the q-dimensional faces of \mathcal{P} and the q-dimensional faces of $f(\mathcal{P})$. In addition, f maps each k-dimensional half-plane in \mathbb{R}^k into another k-dimensional half-plane (e.g. see [5]). Finally, we note that every polytope is compact and that any set of the form $\{x\in\mathbb{R}^k \mid \|x\|\|_{\infty} \leq \gamma\}$, where $\gamma>0$, is a polytope whose q-dimensional faces are generated by fixing k-q entries of x at either $\pm \gamma$ and letting the remaining q entries vary independently over $[-\gamma, \gamma]$.

With these observations in mind, we prove a result characterizing the affine structure of the set of D-unstable points in $\mathbb{R}^{n\times n}$.

<u>Lemma 2.1</u> 1) If D satisfies Assumption A, then for each D-unstable $M \in \mathbb{R}^{n \times n}$ there exists an $(n^2 - m_A)$ dimensional half-plane $\mathcal{H} \subset \mathbb{R}^{n \times n}$ such that a) $M \in \mathcal{H}$ and b) $N \in \mathcal{H}$ implies N is D-unstable.

2) If D satisfies Assumption B, then for each D-unstable $M \in \mathbb{R}^{n \times n}$ there exists an $(n^2 - m_B^2)$ -dimensional

half-plane $\Re c \mathbb{R}^{n \times n}$ such that a) $M \in \mathcal{H}$ and b) $N \in \mathcal{H}$ implies N is D-unstable.

¹ This work was supported by NSF Grant ECS-8612948.

Theorem 2.2 1) Under Assumption A, D-stability of every matrix in every m_A -dimensional face of $\mathcal P$ guarantees D-stability of every matrix in $\mathcal P$.

2) Under Assumption B, D-stability of every matrix in every $\mathbf{m_B}$ -dimensional face of $\mathcal P$ guarantees D-stability of every matrix in $\mathcal P$.

Sketch of Proof 1) If $\mathcal P$ contains an unstable A, from Lemma 2.1, part 1), there exists an $(n^2-m_A^2)$ -dimensional half-plane $\mathcal H$ consisting entirely of D-unstable points and containing A. From dimensionality arguments, such a plane must intersect an m_A^2 -dimensional face of $\mathcal P$. (See [6] for details.)

2) Same as part 1).

3. Minimality of m and m

Our next task is to show that \mathbf{m}_A and \mathbf{m}_B are the smallest integers such that D-stability of all \mathbf{m}_A -dimensional or \mathbf{m}_B -dimensional faces of $\mathfrak P$ guarantees D-stability of $\mathfrak P$ under Assumptions A or B, respectively. In order to prove this, we need a lemma which may be interpreted as a multivariable extension of L'Hospital's rule. For any k×k matrices Q and R, we use the notation Q>0 and R<0 to signify that Q is positive definite and R is negative definite, respectively.

<u>Theorem 3.1</u> 1) Suppose D satisfies Assumption A. For each n there exists an $\mathbf{m_A}$ -dimensional polytope $\mathcal{P} \subset \mathbb{R}^{L \times n}$ containing a D-unstable point and such that all $(\mathbf{m_A} - 1)$ -dimensional faces of \mathcal{P} are D-stable.

2) Suppose D satisfies Assumption B. For each n there exists an m_B -dimensional polytope $\mathcal{P}\subseteq\mathbb{R}^{n\times n}$ containing a D-unstable point and such that all (m_B-1) -dimensional faces of $\mathcal P$ are D-stable.

<u>Sketch of Proof</u> 1) Here the proof is essentially the same as in [4], except that all constructions must be shifted and scaled in the complex plane to compensate for the fact that D can have boundaries other than Re s = 0.

2) In this case we consider an open diamond-shaped region $d_\delta^{<}D$, whose width δ may be small. It suffices to construct a polytope $\mathcal P$ containing a matrix with a pair of eigenvalues on the boundary of D, but with all m_B -dimensional faces consisting of matrices with all eigenvalues in d_δ . After shifting and scaling in $\mathbb C$, we need only consider d_δ -int conv $\{\pm 1, \pm i\}$; we may also assume that the points $\pm i$ are on the boundary of D.

Consider the polytope

$$\mathcal{P}_{\varepsilon} = \left\{ \begin{bmatrix} \mathbf{w} & 1 + \mathbf{x} & \mathbf{y}^{T} \\ -1 + \mathbf{x} & -\mathbf{w} & \mathbf{z}^{T} \\ \mathbf{y} & \mathbf{z} & 0 \end{bmatrix} \middle| \begin{cases} \mathbf{w} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{cases} \right\} \le \varepsilon \right\}$$

where $y,z\in\mathbb{R}^{n-2}$. Consideration of the characteristic polynomial of points in $\mathcal{P}_{\varepsilon}$ along with a multivariable extension of L'Hospital's rule shows that, for every $\delta>0$, there exists an $\varepsilon>0$ such that $\mathcal{P}=\mathcal{P}_{\varepsilon}$ satisfies the degired properties.

Note that Theorem 3.1 also implies that the half-planes constructed in Lemma 2.1 are maximal in the sense that there exists a D-unstable matrix M in $\mathbb{R}^{n\times n}$ such that every half-plane containing M of dimension greater than n^2-m_A or n^2-m_B must also contain a D-unstable matrix. Indeed, if this were not the case, the arguments in Theorem 3.1 could be used to prove that \mathbf{m}_A and \mathbf{m}_B are not minimal.

The construction used in the proof of Theorem 3.1 might be viewed as somewhat weak in three respects: 1) The polytope P contains only a single marginally D-unstable matrix (i.e. a matrix having all eigenvalues in D and at least one on the boundary of D). 2) The construction yields only a polytope of dimension m_A or m_B . 3) Arbitrary subpolytopes are not considered; thus it is not clear that checking all subpolytopes of dimension, say, ${ t m_A^{-1}}$ or ${ t m_B^{-1}}$ would not guarantee D-stability. The minimality proof would be more convincing if it could be extended to give a family of polytopes, each 1) containing a strictly D-unstable point (and, since the D-unstable set in ${f C}$ is necessarily open, infinitely many D-unstable points), 2) having arbitrary dimension k, and 3) all $min\{k-1, m_A-1\}$ -dimensional $min\{k-1, m_B^{-1}\}$ -dimensional subpolytopes D-stable. [4] we showed how such improvements over Theorem 3.1 can be made for the case where D satisfies Assumption A with $b=-\infty$ and a=0. Essentially the same arguments also apply for an arbitrary nonempty, open, convex, conjugate-symmetric D. We omit the details here and refer the reader to [4].

4. Conclusions

Our results demonstrate to what extent the techniques for checking polytope stability proposed in [1] and [3] can be extended to the case of $n \times n$ We have shown that, without further matrices. information describing the particular structure of a either (2n-4)-dimensional (2n-2)-dimensional faces need to be checked for D-stability, depending on the structure of D. Since testing even one such face can be a formidable task when n is large, and since the number of (2n-4)-dimensional and (2n-2)-dimensional faces grow exponentially with n, more work needs to be done before a computationally tractable algorithm can be devised for checking D-stability. It is our hope, however, that our work will be useful as an integral part of some future coherent theory of robust stability.

REFERENCES

- [1] A. C. Bartlett, C. V. Hollot, H. Lin, "Root Locations of an Entire Polytope of Polynomials: It Suffices to Check the Edges," Proceedings of the American Control Conference, 1611-1616, 1987.
- [2] N. K. Bose, "A System-Theoretic Approach to Stability of Sets of Polynomials," Contemporary Mathematics, Vol. 47, 25-34, 1985.
- [3] V. L. Kharitonov, "Asymptotic Stability of an Equilibrium Position of a Family of Systems of Linear Differential Equations," Differential'nye Uravneniya, Vol. 14, no. 11, 1483-1485, 1978.
- [4] J. D. Cobb, C. L. DeMarco, "The Minimal Dimension of Stable Faces Required to Guarantee Stability of A Matrix Polytope," submitted.
- [5] A. Bronsted, An Introduction to Convex Polytopes, Springer-Verlag, 1983.
- [6] J. D. Cobb, "The Minimal Dimension of Stable Faces Required to Guarantee Stability of A Matrix Polytope: D-Stability," submitted.