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Abstract
We consider the problem of determining whether a
polytope ? of nxn matrices is D-stable -- i.e. whether

in ? has all its eigenvalues in a given
nonempty, open, convex, conjugate--symmetric subset D
of the complex plane. Qur approach is to check
D-stability of certain faces of ?. In particular, for
each D and n we determine the smallest integer m such

each point

that D-stability of every n~dimensional face
guarantees D-stability of .
1. Introduction

Let DcC be nonempty, open, convex, and

conjugate-symmetric (symmetric about the real axis),
and define an nxn real matrix M to be D-stable if each
eigenvalue A of M satisfies AcD; otherwise, M is
D-unstable. We consider the problem of determining

whether certain subsets of Rnxn consist entirely of
D-stable matrices. To facilitate discussion we begin
with some definitions.

A (convex) polytope ? in a vector space V is the
convex hull conv(Q) of any nonempty finite subset QcV.
The dimension of P is the dimension of the affine hull
aff(P) of P. A face of # is any set of the form NP,
where I is a supporting hyperplane of ?. Finally, a
k-dimensional half-plane in V is any nonempty set of
the form #=RnS, where R is a closed half-space, § is a

k-dimensional affine subspace, and S¢R. (Note that
this implies that aff(¥#) is simply S.)

In the robust control literature, considerable
interest has been generated by the problem of

determining whether a family of linear systems can be
shown to consist entirely of D-stable systems by
checking D-stability of certain representative members
of that family. In many cases, such problems can be
reduced to that of determining whether a polytope or

other subset of Rn or Rnxn
D-stable points ([1],{2]}.

consists entirely of
(D-stability of a vector

xeR" means simply that the polynomial sn+xpsr+...+x;
has all its roots in D.) We are primarily interested
in the technique of checking D-stability of lower
dimensional faces of a polytope in order to guarantee
D-stability of the entire set.

Most "facial” results pertain to continuous-time
(CT) stability -- i.e. where D is the open left half
complex plane. The seminal result (3] for polynomial
polytopes motivates the approach. 1In [3] it is shown
that a polynomial polytope of a particular simple
structure (an "interval polynomial") is CT stable
whenever four specially constructed vertices are CT
stable. A more recent result {1] demonstrates that,
for an arbitrary polynomial polytope, checking all
edges is sufficient to guarantee CT stability. With

respect to polytopes in Rnxn’ is has been shown {4]
that 1) an arbitrary polytope is CT stable if all
(2n-4)-dimensional faces are CT stahle and 2) there
exist CT unstable polytopes such that all

1 This work was supported by NSF Grant ECS-8612948.
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(2n-5)-dimensional faces are CT stable; hence, the
value 2n-4 is minimal. In this paper we extend the

results of [4] to D-stability where D may be any
nonempty, open, convex, conjugate-symmetric subset of
C.

We note that for the cases n=0 and n=1 our
problem has a trivial solution: D-stability of
vertices guarantees D-stability of the polytope. To
handle n22 we need to partition the family of
stability sets D according to the following two
assumptions.

Assumption A: D is of the form D=(seC}a<Re s <b},
where -o<a<bsw,
Assumption B: D is a nonempty, open, convex,

conjugate-symmetric set not satisfying Assumption A.

sas : {1, n=2
In addition, we define mA(n)— 2n-4, n>2 and
mB(n)=2n—2. We intend to show that lnA and mB are the

values of m that we seek for cases A and B.

2, Sufficiency of m, and m
A B

Throughout our analysis, we will make extensive
use of the fact that any affine, one-to-one map

2
f:Rk — ® determines an affine isomorphism between
R¥ and £(R¥).
for any polytope ?cmk, f(®?) is also a polytope of the

Among other things, this implies that,

same dimension as P; furthermore, f sets up a
one-to-one correspondence between the g-dimensional
faces of ? and the qg-dimensional faces of f{(?). 1In

k

addition, f maps each k-dimensional half-plane in R
into another k-dimensional half-plane (e.g. see (5]).
Finally, we note that every polytope is compact and

that any set of the form (xeRk}anw$7). where >0, is

a polytope whose g-dimensional faces are generated by
fixing k-q entries of x at either *y and letting the
remaining q entries vary independently over [-7,7]-
With these observations in mind, we prove a
result characterizing the affine structure of the set

of D-unstable points in Rnxn'

Lemma 2.1 1) If D satisfies Assumption A, then for
each Memnxn
(n2—mA)~dimensiona1 half-plane ”Cmnxn such that a) Me#

and b) Ne# implies N is D-unstable.
2) If D satisfies Assumption B,

D--unstable Memnxn

D-unstable there exists an

then for each

there exists an (n2~mB)—djmensional

half-plane ﬂcRnxn such that a) Me# and b) Ne# implies
N is D-unstable.



Theorem 2.2 1) Under Assumption A, D-stability of
every matrix in every mA—dimensional face of %
guarantees D-stability of every matrix in P.

2) Under ‘Assumption B, D-stability of every

matrix in every mB—dimensional face of % guarantees

D-stability of every matrix in P.

Sketch of Proof 1) If ? contains an unstable A, from
Lemma 2.1, part 1), there exists an
(nzﬂmA)—dimensional half-plane # consisting entirely
of D-unstable points and containing A. From

dimensionality arguments, such a plane must intersect
an m,~dimensional face of #. (See [6] for details.)

A
2) Same as part 1). a

3. Minimality of m, and m
A B

Qur next task is to show that m, and m, are the

A B
smallest integers such that D-stability of all

mA—dimensional or mB—dimensional faces of P guarantees

D-stability of %? under Assumptions A or B,
respectively. In order to prove this, we need a lemma
which may be interpreted as a multivariable extension
of L'Hospital's rule. For any kxk matrices Q and R,
we use the notation Q>0 and R<O to signify that Q is

positive definite and R is negative definite,
respectively.
Theorem 3.1 1) Suppose D satisfies Assumption A. For

each n there exists an mA~dimensional polytope ?Cmnxn

containing a D-unstable point and such that all
(mA—l)—dlmensional faces of P are D-stable.

For each n
polytope ?Cmnxn
containing a D-unstable point and such that all
(mB—l)—dlmensional faces of P are D-stable.

2) Suppose D satisfies Assumption B.

there exists an mB—dimensional

Sketch of Proof 1) Here the proof is essentially the
same as in [4], except that all constructions must be
shifted and scaled in the complex plane to compensate
for the fact that D can have boundaries other than
Re s=0.

2) In this case we consider an open
diamond-shaped region dacD, whose width & may be
small. It suffices to construct a polytope P

containing a matrix with a pair of eigenvalues on the
boundary of D, but with all mB—dimensional faces
consisting of matrices with all eigenvalues in d&'
After shifting and scaling in €, we need only consider
d =int conv{tl,*i}; we may also assume that the points

+j are on the boundary of D.
Consider the polytope

W 1+x yT w
X
= - - <
?e {|-1+x -w z v <e}
vy 4 0 4

where y,zemn—z. Consideration of the characteristic
polynomial of points in ?a along with a multivariable

extension of L'Hospital's rule shows that, for every
6>0, there exists an &€>0 such that ?=?5 satisfies the
desired properties. n|
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Note that Theorem 3.1 also implies that the
half-planes constructed in Lemma 2.1 are maximal in
the sense that there exists a D-unstable matrix M in

Rnxn such that every half-plane containing M of
dimension greater than r.2—mA or nz—mB must also
contain a D-unstable matrix. Indeed, if this were not

the case, the arguments in Theorem 3.1 could be used

to prove that m, and mB are not minimal.

The construction used in the proof of Theorem 3.1
might be viewed as somewhat weak in three respects:
1) The polytope ? contains only a single marginally
D-unstable matrix (i.e. a matrix having all
eigenvalues in D and at least one on the boundary of
n). 2) The construction yields only a polytape of

dimension m, OT m. 3) Arbitrary subpolytopes are not

considered; thus it is not clear that checking all

subpolytopes of dimension, say, mA—l or mB—l would not

guarantee D-stability. The minimality proof would be
more convincing if it could be extended to give a
family of polytopes, each 1) containing a strictly
D-unstable point (and, since the D-unstable set in C
is necessarily open, infinitely many D-unstable
points), 2) having arbitrary dimension k, and 3)
having all min{k—l,mA—l}—dimensional or

min(k—l,mB—l)—dimensional subpolytopes D-stable. In

[4) we showed how such improvements over Theorem 3.1
can be made for the case where D satisfies Assumption
A with b=-«= and a=0. Essentially the same arguments
also apply for an arbitrary nonempty, open, convex,
conjugate-symmetric D. We omit the details here and
refer the reader to [4].

4. Conclusions

Our results demonstrate to what extent the
techniques for checking polytope stability proposed in
[1] and [3] can be extended to the case of nxn
matrices. We have shown that, without further
information describing the particular structure of a

polytope, either (2n-4)-dimensional or
{2n--2)--dimensional faces need to be checked for
D-stability, depending on the structure of D. Since

testing even one such face can be a formidable task
when n is large, and since the number of
(2n-4)~-dimensional and (2n-2)-dimensional faces grow
exponentially with n, more work needs to be done
before a computationally tractable algorithm can be
devised for checking D-stability. It is our hope,

however, that our work will be useful as an integral
part of some future coherent theory of robust
stability.

REFERENCES
ft] A. C. Bartlett, C. V. sllot, H. Lin, "Root

Locations of an Entire Polytope of Polynomials:
It Suffices to Check the Edges," Proceedings of
the American Control Conference, 1611-1616, 1987,
N. K. Bose, "A System-Theoretic Approach to
Stability of Sets of Polynomials," Contemporary

(2}

Mathematics, Vol. 47, 25-34, 1985.

{3] V. L. Kharitonov, "Asymptotic Stability of an
Equilibrium Position of a Family of Systems of
Linear Differential Equations," Differential’'nye
Uravneniya, Vol. 14, no. 11, 1483-1485, 1978.

[4] J. D. Cobb, C. L. DeMarco, "The Minimal Dimension
of Stable Faces Required to Guarantee Stability
of A Matrix Polytope,"” submitted.

[5] A. Bronsted, An Introduction to Convex Polytopes,

Springer-Verlag, 1983.

J. D. Cobb, "The Minimal Dimension of Stable
Faces Required to Guarantee Stability of A Matrix
Polytope: D~Stability,"” submitted.

f6]



