P gs of the 26th C:
on Decision and Control
Los Angeles, CA = Docember 1987

WP3 - 4:30

AN EXPLICIT CHARACTERIZATION OF DESTABILIZING PHENOMENA

FOR AN ARBITRARY CONTROL SYSTEM1

J. Daniel Cobb

Department of Electrical and Computer Engineering
University of Wisconsin-Madison
1415 Johnson Drive
Madison, WI 53706-1691

Abstract

An explicit characterization is obtained of
unmodelled dynamic phenomena which can be present in
any plant and compensator and which potentially can
destabilize the closed-loop configuration. It is
shown that such uncertainty can be so small as to be
undetectable by any real-world system identification
scheme. This paper generalizes the results of [1] for
state-space systems to systems with algebraic
constraints.

1._INTRODUCTION

The results of this paper
end-product of a research effort directed at
characterizing the set of linear time-invariant
compensators which stabilize a given plant in the
presence of high-frequency unmodelled dynamics or
parasitics. It is assumed that the parasitic elements
are not Known explicitly but reside in a large class
of possibilities. Until recently it was our
assumption that sufficiently accurate measurements can
always be made in establishing system models so that
the existence of robustly stabilizing compensators is
guaranteed for any given plant. Our work was thus
directed at 1) characterizing sufficient information
for a robust design and 2) finding a convenient way of
describing the compensators of interest.

Recent results have led us to the opposite
conclusion: Contrary to what we view as conventional
wisdom in control engineering practice, it is not
possible to obtain sufficient information concerning
the structure of a pair of physical systems (plant and
compensator) on the basis of real-world measurements
so as to guarantee stability, even within the linear,
time-invariant framework. There always exists some
{perhaps very small) probability that the unmodelled
dynamic elements inherent in the plant and compensator
will interact in a particularly undesirable way to
produce instability in the closed-loop configuration.
Another way of stating this conclusion is to say that
open-loop measurements can never guarantee closed-loop
stability. Inherent in our work is an explicit
characterization of one kind of uncertainty which can
lead to unpredicted instability.

represent the
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Consider the linear, time-invariant model
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where A Equation (1) is assumed to
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contain all known system information. In general,
such information consists of dynamic relationships
among the system variables as well as some algebraic
constraints. Our intention is to drop the assumption

is nonsingular.

of nonsingularity of A in a later paper.
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Beyond those system variables whose explicit
characterization is known, there exist other physical
quantities which, if modelled. would lead to an
augmented system of the form
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where A33 and A22 - A23A33A32 are nonsingular, and
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Without loss of genera)ity. we may further assume that

A33 and A22 A23A33A3z are stable matrices; indeed,
if this is not initially true, premultiplication of
(2} by
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where S and T are stable, achieves the desired result.
It is known from the multi-rate singular perturbation
literature (e.g., see {2}) that our nonsingularity
assumptions and equations (3)-{6) together guarantee
that (1) and (2) predict precisely the same behavior
for x and y regardless of the initial condition and

input.

Besides the unmodelled variables £, every system
model also contains some uncertainty with regard to
unmodelled dynamics. Such phenomena might be
characterized as a small peturbation of (2) of the
form
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where & — 0+ and ae — 0+ at perhaps different rates.

We are interested in the effects of perturbations of
the augmented system (2) on closed-loop stability.

2. PHYSICAL:  MEASUREMENTS AND SYSTEM EQUIVALENCE

In this section we address the issue of which
mathematical perturbations of the nominal system model
(1) can in fact be physically present in the augmented
system (2). Since we are primarily concerned with
characterizing sufficient information for guaranteed
stability, it would be interesting to Know first if
there exist perturabtions of (2) which simply cannot
be detected by physical measurements of any sort and
then to what extent such perturbations can alter the
behavior of the closed-loop configuration, To achieve
this, we need to set down some basic rules of
measurement which must be adhered to in any real-world
modelling scenario.

For example, since any measurement or control
process occurs over a finite interval of time, we may
assume that the input u to the systems (1), (2), and
(7) 1s defined on some compact interval, say [0,7]
Also, since every actuator has a maximum value as well
as a maximum rate of change of voltage, force, or
other input quantity that it can generate, we may

assume that u is of class C1 and that there exist

numbers KO,K1 < o, independent of u, such that
fu(t)f < K, and fu(t)f <K, for all te (0,7].
Finally, we may take t = 0 to correspond to the time

when an input is first applied; hence, u{(0) = 0.
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These conditions determine the class of admissible
input functions .

As part of the modelling process, one might
initialize the system at a variety of inittal
conditions. Just as with the input, there is a bound

on the maximum possible value of initial condition
which can be induced; i.e. the initial vector x, must
lie within some ball B(O,Ka) of radius Kz < @

centered at the origin.

Associated with any measuring device is a number
8 > 0 such that no two quantities differing by an
amount less than & can be distinguished from one
another. The space % and the numbers & and K2 taken

together determine an equivalence between systems.
Theorem 1 below wmakes this idea . precise. It is
assumed that the same input u and initial condition
vector X, are appiied to each system.

Theorem 1 Let

£, e be the solutions of (2) and (7),

respectively. Then there exists a K < «» such that to
each & > 0 there corresponds an &, > 0 such that
1 Ix (t) - x(1)] <K, 1€ .(t) - (L)} <K Vte [0,7]

2) hx (1) - x(0)) < &, JE (v) - &) <o Vte(ldz]
3) dy (t) - y(t)} <& Vtelor]

whenever u € %, Xp € B(O.Kz).

and ¢

and € < &g.

Theorem 1 states that the perturbed system (7)
cannot be distinguished from the augmented system (2)
{and, consequently, from the original system (1)) as
long as the given rules of measurement involving %. 4,

and K2 are adhered to and the perturbed elements & and
a_ are sufficiently close to their nominal values.
indeed, &, can be selected such that the differences

between the matrix entries in (2) and (7) are smaller
than the tolerance §é; furthermore, 2) and 3} indicate
that the same is true of the state and output vectors
of the nominal versus perturbed systems. A minor
technicality concerning the natural response of the
state vector is bhandled by 1): In general, some
boundary layer peaking (see ({3}) occurs in the
perturbed system (7). Nevertheless, according to
Theorem 1 the peaking is bounded uniformly in & and
the base of the initial spike can be made arbitrarily
small. Hence, this transient behavior is undetectable
for sufficiently small §. We therefore conclude that
the nominal system (2) and the perturbed system (7)
are indistinguishable on the basis of any kind of
measurement scheme,

The proof of Theorem 1 is based on the following
result.
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Lemma 1 is proven using the general decomposition
procedure for singularly perturbed systems outlined in

{4]. Its proof may be viewed as a multiple time scale
generalization of the two time scale techniques
employed in [1].
3. CLOSED-LOOP INSTABILITY
Consider the feedback configuration
v 4 Plant >y
w .
l—~————‘cnmpensator
where the plant is nominally given by (1) and the
compensator by
I 0]fz= F. F z ¢
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(8)
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%2
As in (1), we assume nonsingularity of ?22.

Furthermore, we suppose that the closed-loop system is
nominally stable and that it exhibits no impulsive
motion in its response. The latter condition is
equivalent to nonsingularity of the matrix

[

It is of primary interest to know whether the same
closed-loop configuration of the perturbed systems (7)
and
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is guaranteed to be stable for sufficiently small &.
Here we are assuming that conditions analogous to
{3)-(6) hold for the Fij' Gi' and Hi' The perturbed
closed-loop system is of the form
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The discussion of Section 2 can now be applied to

-1
It X22 - X23X33X32 and
X33 are nonsingular, then from Lemma 1 it follows that

corresponding to each eigenvalue 4 of X33 there is an

the closed-loop system (10).

of (10) £ — 0+.

is unstable, the closed-loop system (10)

eigenvalue

Hence, if X

1 <
Exs with ze — A as
33
must also be unstable.
stronger resuit.

We can in fact prove a

Theorem 2 Let R < « and 61,52 > 0.
3’ Z3' x22’ X23’
and st of the form (11) such that a) A33 and }33 are

1) -There exist matrices x33. Y

stable, b) (x33'Y3,23) is controllable and observable,
. -1

c) X33 is nonsingular and unstable, d) X22 _ X23X33X32

is nonsingular, and e) equations (3)-~(6) and the

analogous compensator equations are satisfied.

2) Under the conditions of part 1), there exists
€o > 0 such that the transfer function matrix of (10)
has a pole b, with Re P, > R whenever 0 < & < &,.

3) Under the conditions of part 1), there exists
€p > 0 such that corresponding to each € € (0,&p)

there exist a continuous function ue:[O.r] — R with
ﬂue(t)ﬂ < 51 for all t € {0,7] and a set Qs c [o,7]
with mﬂe < 62 such that the output of (10), subject to
¥(0) = 0 and u =
t e [0,7] - 06.

“e’ satisfies uye(t)ﬂ > R for every

(m denotes Lebesgue measure.)

The proof of Theorem 2 requires only a slight
modification of the technigues appearing in [1]. We
conclude from the theorem that any two systems of the
form (1), which nominally determine a stable
closed-1loop configuration, can always contain
unmodelled variables and corresponding high-frequency
dynamics which are not discernable under any
measurement scheme (Theorem 1) and which destabilize
the closed-loop system (Theorem 2). Our result
explicitly characterizes such destabilizing phenomena.

448

(1]

(2}

[31]

{4]

REFERENCES

J. D. Cobb, "Linear Compensator Designs Based
Exclusively on Input-Output Information are Never
Robust with Respect to Unmodelled Dynamics,” to
appear in IEEE Transactions on Automatic Control.

F. Hoppensteadt, "On Systems of Ordinary
Differential Equations with Several Parameters
Multiplying the Derivatives,” Journal of
Differential Equations, 5, 106-116 (1969).

P. V. Kokotovic, “Applications of Singular
Perturbation Techniques to Control Problems,®
SIAM Review, Vol. 26, No. 4, October 1984,
501-550.

J. D. Cobb, "Global Analyticity of a Geometric
Decomposition for Linear Singularly Perturbed
Systems, Circuits, Systems, and Signai
Processing, Vol. 5, No. 1, 1986, 139-152.



