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Abstract

We are interested in the effects of unmodelled
parasitics .or high-frequency phenomena on the closed-
loop performance of a given control system. We show
that, if a compensator design is based entirely on
input-output characteristics of the open-loop system,
it is always possible that such unmodelled aspects of

the plant may destabilize the  closed-loop
configuration. The proof s based on Hurwitz
conditions.

1. Introduction

We wish to investigate the effects of high-
frequency phenomena or parasitics on the behavior of
clTosed-loop system characteristics. Parasitic effects
are an inherent source of wuncertainty in any
mathematical model "since no modelling process can
capture all dynamic phenomena which determine system
behavior. High-frequency effects are often treated
using singular perturbation techniques (see [1], [2]);
we also adopt this approach but in a more general
setting.

The issue we specifically -wish to address is that
of the relationship between open-loop model accuracy
and accuracy of the corresponding closed-l1oop model,
obtained by applying a given conpensator. We will
give a precise meaning 'to the term "accuracy" in
Section 2, but loosely speaking we are referring to
the degree to which a model ‘predicts actual behavior
of the physical system under all possible inputs and
initial conditions. Conventional wisdom suggests
that, whenever a model predicts system behavior to
within- some small degree of error, the “resulting
closed-Toop model should be of comparable accuracy.
This idea has been shown to be erroneous by examples
such as the one.contained in [3] which we now briefly

review:
1 . 1 1 0 2
€ X 0 -1 0] x+ {-1] u
€ 1 -1 - -

The system (1) with e =0 1is to be viewed as
the open-loop model and has transfer function

P{s) 2

s-1 °
exactly portrayed by (1) with e > 0 small but not
specifically known. Hence (1) represents a first-
order model with parasitic uncertainty. It is easily
shown (see [4]) that, as e + 0%, the solutions of (1)
converge in the sense of distributions and uniformly
on compact subintervals of (0,») for each initial
condition .and input. In this sense, then, any fixed
degree of accuracy might be achieved by the open-loop

(1)

The actual physical system is more
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model (1) (with e=0)
sufficiently smaii.

in the actual system is

It is shown in [3] that, if feedback u ky is
applied to (1), k > -2 yields convergent solutions as
e » 0¥ and k < -2 yields divergent solutions. Hence,
we may say that closed-loop model accuracy is at a
tolerable level only when k > -2, When k < -2, one
eigenvalue tends to +s as e + 0%; this phenomenon is
not seen in the first-order closed-loop model.

We intend to further explore these issues but
with an emphasis on input-output representations
instead of the state-space approach of [3]. We will
see that the inherent loss of information regarding
internal structure that one faces in dealing with
input-output ‘models changes the picture dramatically.

2. Convergence df Transfer Functions

-We need to state more precisely what we mean by
the accuracy of models, especially with respect to
input-output representations. Let (Pg) be a sequence
of pxm rational matrices with degree less than or
equal to n (see [5]). We say that P, + P if there
exist sequences E£¢ +» E, A, » A, B, + B, and Cg + C

such that
1) det(sE-A) # 0
2) Pels) = C(sEc-Ag)"1Be ¥ € > 0
3) P(s) = C(sE-A)-1B .
4) the solutions of E. X = A +B_u

for each initial condition and input converge to that
of Ex = Ax + Bu 1in the sense of distributions and
uniformly on compact subintervals of (0,%).

Condition 1) gquarantees that the differential
equations will have unique solutions for sufficiently
small e. A transfer matrix sequence (Pg) thus
converges if and only if it has a convergent sequence
of realizations with convergent solutions. For
example, the sequence

_ e(2e-1)s%+6es+2

P_(s)
o' (es+1)2(s-1)

converges to

2
P(S) -S—-T
since it has the realization (1).

The
convergent

of
of

on the existence
that convergence

reason we insist
realizations s
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coefficients in Pg above is not sufficient to
guarantee that the inverse transform of P.(s)U(s) is
well-behaved in e for every input U. For instance

Pe(s) = E%IT converges in our sense, since Eg = ¢,

Ac = By = Cg = 1 satisfy condition 4). On the other
hand, Pe(s) = ?%§T= does not and, for ult) =1,
Pc(s)u(s) has inverse transform et/e-1, Here, just

as with state-space models, we need to ensure that
time-domain behavior is accurately predicted.

3. Further Examples
We begin to show 'in this section that the
potentially bad situation 1illustrated by (1) is in

fact worse when we are restricted to designs based
entirely on input-output information. Suppose,
instead of the model (1) with e = 0, we are merely

given a transfer function P(s) = E%T . On the basis
of this information we proceed to design a
compensation scheme, say u = ky, in order to achieve

some desired specifications. There are infinitely
many realizations of P, one being
]u

1 . 1 0 0 2

€ X 0 0 -1l x+]0

€ 0o 1 - 1
assumed to have been already chosen, and

where k is
The closed-loop system is

e =0 for the moment.
142k O 6
0 0 -1 x
k 1 1

1 .
€ X
€
if

again with e =0, Now, ¢ is set slightly
positive, (2) has characteristic polynomial

(2)

23 2
det(sEe-(Ae+BakC€))=e s”-e(1+e(1+2k))s

+(1+e (142k) ) s-6ek-1-2k

Not only is the polynomial not Hurwitz for any k, but
it has at 1least one root with real part tending to
4o, Furthermore, direct calculation shows that the
solutions of (2) diverge as e + 0*. We conclude,
therefore, that for the open-loop transfer function

P(s) = E%T and any compensator gain k, there exists a
sequence P, + 0 1in the sense of Section 2 such that

P

1-kP

e *
€

In other words, there exist systems arbitrarily close
to our open-loop model which are not accurately
characterized in the closed-loop configuration. This
~fact is in striking contrast with the situation (1)
where internal structural information is included in

the model. There the closed-loop model fails to be
accurate only for those k in a subinterval of R.
Here, no k is guaranteed to yield reasonable closed-
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Toop performance. Dropping internal structural
information has destroyed our ability to accurately
predict closed-loop behvior.

One might be tempted to say that the use of a
static conpensator is the source of the apparent

difficulties. A strictly proper compensator would
induce additional high-frequency roll-off in the
system loop gain and so should rediuce the problems
caused by unmodelled parasitics. The following

example illustrates that this is not necessarily true
either. Suppose the open-loop model is again
P(s) = E%T , and a strictly proper compensator C(s) =

_a_
s+b

perturbation (P.) of P, where Pe is realized by

is designed to meet some specifications. The

1 1 0 0 0 2
€ oo o1 ol )

€ 0 1 0 -2 0

oo e 1 -3 1

. 4
y = [} 0 0 3 X

satisfies conditions 1) - 4) of Section 2. Again by
direct calculation it can be seen that, for any

realization of C(s), the closed-loop system has at
least one eigenvalue with real part tending to +w
and solutions diverging as e + 0%, We therefore have
shown that, for any first-order strictly proper
compensator C, there exist systems which are
adequately modelled by p in an open-loop
configuration but not closed-loop.

It is 1important to note that, in order to
generate an example where input-output information is
insufficient to reliably compensate a system, we had
to resort to the use of a nonstandard perturbation,
characterized by the €% term on the left side of (3)

and various perturbation terms on the right. Such
nonstandard perturbations are far from completely
understood but certainly must be included in a

thorough perturbational analysis.

4. Main Result

Rather than continuing to generate more and more
general examples, we will state and prove our main
theorem,
Theorem

Let the rational functions P and c be
strictly proper and proper, respectively. There
exists a sequence P, + P in the sense of Section 2

P
such that 1_; c has at least one pole with real part
[

tending to += and divergent solutions,

Sketch of Proof. Suppose P is realized by a
controllable, observable triple (F,G,H), and lat
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150 s
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Direct calculation reveals that, when any realization

of C(s) 1s applied to the transformed system,
divergent solutions result. Also, the (n+g+l1)th
coefficient can be shown to be negative for

sufficiently small e, so at least one root must be
in the right-half plane. Furthermore, shifting the
polynomial by any M <« results in a polynomial
whose (n+g+l)th coefficient is still negative. Thus,
at least one root must have real part tending to +w.

It is easy to see that at ¢ =0 either of the two
given forms has transfer function P(s), so the system
realizes a perturbation P + P where convergence is
consistent with Section 2. ¢ (

6N

The theorem asserts that a transfer function does
not contain enough information for robust compensation
with respect to parasitic effects. Given any {nput-
output model P and any compensator C, there exist
systems Pe arbitrarily close to P 1in the sense of
Section 2 such that the closed-lcop model Tgﬁf
not adequately predict the actual closed-Toop system
performance. Worse yet, the increasing instability of
the perturbed closed-loop system illustrates that the
actual system may, at least potentially, be widly
unstable even when the model predicts stability.

does

This result has serious consequences for
conventional identification techniques where system
characteristics are determined simply by applying
various inputs and viewing the system responses at the
output. The most crucial issue here involves the
class of parasitics one is to allow. By restricting
the class of plant perturbation (P_) sufficiently,
one avoids the theorem's negative tonclusion. For
example, by considering only two-time scale systems as
characterized by [1], one can easily show that a
strictly proper compensator. guarantees accuracy of the
closed-loop model. On .the other hand, extending the
class of allowed perturbations to those described in
Section 2 shows that any compensator may have
robustness problems. The question that needs to be
answered is that of describing the <class of
perturbations that are actually "physically"
realizable. This will require further study.

One important point to observe is that in all
constructions we have considered the open-loop model,
determined by the 4-tuple (E,A,B,C), is not fast
controllable and fast observable (see [6]). It is
possible to show that this is an essential feature of
all examples of this type. We are convinced that it
is the " existence of ‘high-frequency modes of the
system, which are only weakly controllable or
observable and are actually "hidden" in the system
model, that cause the undersirable effects we have
observed, The essential difference between the
information contained in the input-output model P
and that contained in (1) with e =0 s that, in
passing to a transfer function representation,
information describing uncontrollable or unobservable
modes is lost. The thecrem states that the 1loss of
information describing uncontrollable or unobservable
modes at infinity is, in fact, crucial information if
one expects to do robust compensation.

5. Conclusion

The
addressed

needs to be
realizability of

central issue that still
is that of the physical
different classes of parasitics. One possible
approach would be to <compare the types of
perturbations used in the proof of our main theorem
to, say, the class of parasitics realizable in a
thoroughly understood family of physical systems such
as the passive (or active) RLC networks. If this
class of perturbations could be shown to be broad
enough to allow the proof of the theorem to still
carry through, we would have a compelling argument for
maintaining at least partial internal structural
information when performing compensator design.

Besides such theoretical arguments, it is our
belief that the high-frequency phenomena we have
described in this paper do crop up in practice and can

be exhibited and studied systematically in an
experimental setting. Further theoretical research is
required, however, before such a program can be
undertaken,
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