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Abstract

We consider the problem of robust feedback
control of LTI systems in the presence of parasitics.

An essential related concept is that of fast stability
-3 fvnn of (fah!]]fu characterizing parasitics or
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high- frequenqy effects. A rigorous definition of fast
stability is formulated in terms of topologies on a
certain differentiable manifold and is connected with
the robust feedback problem. A generic solution is
given along with illustrative examples.

1. Introduction
Recently, a number of examples have come to light

which demonstrate how little is known about the
effects of parasitics on feedback systems. For

example, Khalil [1] proposes the following: Consider
the system
X) = X F Xy U
€ Xy = X| = Xy + U (1)
y=xX*x%

where ¢ > 0 is small, and adopt the feedback law
u= 2y (2)

For e=0 the closed-loop system has one eigenvalue
A1 = -6, but for ¢ > 0 the <closed-loop system is
second order with eigenvalues A1 +» -6 and Ay » += .

Hence, although (1) with e = 0 is certainly a good
model of the open-loop system, we would not consider
(1) and (2) together (with € = 0) an appropriate model
for the closed-loop system. This is true since, as
e » 0, the closed-loop solutions do not look at all
like those at ¢ = 0. Alternatively, we might say that
the feedback law (2) is not robust with respect to
certain parasitics.

Various researchers have informally pointed out
that this problem might be dependent on the fact that
the transfer function of (1) with ¢ = 0 is not
strictly proper and, hence, some sort of positive
feedback effect could be causing the difficulty
{although such an observation far from trivializes the
probiem). In response, Khalil [2] has proposed a
higher-dimensional example which illustrates the same
non-robust behavior but which gives a strictly proper
transfer function at ¢ = 0. We seek a systematic way
of dealing with such examples.

Our aproach to singular perturbations differs
somewhat from that typified by the form (1) which
appears extensively in the literature [3], [4]. The
form (1) is perfectly good for studying a large class
of parasitics viewed one at a time; however, we feel
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that in many instances it makes sense to consider a
broad class of perturbations simultaneously. For
example, there are certainly cases where a large
number of ill-defined parasitics are neglected in
developing a model, the uncertain parasitics being a

cause for concern { Indaed ta come degree thig
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problem is inherent in any modelling process.) The
robust feedback problem then becomes one of finding
feedback gains which preserve the accuracy of the
model upon perturbation, the gains being independent
of the perturbations which range over the largest
"reasonable" class. These ideas will be made more
precise in section 3.

2. A Manifold of Linear Systems

In order to formulate the perturbational problem
more abstractly, we consider the set of LTI singular
systems - viz. systems of the form

= Ax + Bu
(3)
y = Cx

where E and A are n x n matrices (E may be singular)
with det(Es-A) # 0, B is nx m, ? is px n.
Evidently we are dealing with R" 2"+m+P) minus an

algebraic variety. Next, define an equivalence
relation according to
(Eys Aps By €y) = (Eps Aps By, Cy)

if
[EyA By = ML A.B,]
for some nonsingular Me R"? and €y = Cp. Finally,

form the correigondin quotient set L(n,m,p) (or
simply L) from Rn{Zn+m+p

We may further define a map
. s phtp
QXO” : > D,

of distributions on R with
support in [0, =) and xg e R" and u e DM are
respectively the initial condition and input in (3).
Oxqu s determined by

where 0p is the space

£ —> (x,y)

where x and y form the solution of (3) in the sense of

[5].

In a forthcoming publication we will show that L
can be given the structure of a real analytic manifold
in a natural way, the manifold satisfying certain com-
pleteness properties with respect to the map éxgu
Imposed on this manifold we have not only man1901d
topology but also a large class of other topologies,
the most interesting of which are those determined by
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imposing a topology 7 on DE*P and letting 7' on L be
the weakest topology which makes each dxgu continuous.,
It 1s a consequence of the completeness properties of
L that T' is stronger than manifold topology whenever

T is at least as strong as the standard toplogy on
DQ+P (see [6]). The interplay of these various
topologies 1is a central idssue 1in the robustness

problem. We explore this in the next section.

3. Fast Stability

We begin this section by recalling from [7] that
a nonsingular transformation decomposes (3) into two
subsystems

= + B
XS ASXS Su

Afif = X + Beu (4)

y = C.x. + Cox,

where Af is nilpotent. The subscripts s and f corres-
pond to the "slow" and "fast" subsystems. Since the
slow subsystem is just a state-space system, we use
the term slow stability to refer to its stability
properties as defined and characterized in state-space
theory. Fast stability analogously refers to
stability properties of the fast subsystem in the
sense we are about to describe.

At this point we would Tike to allow a large
class of possible perturbations of the given system.
However, we certainly cannot get away with looking at
all small perturbations since simply substituting
Af + el'"for Af in (4) sends all fast eigenvalues to
+ o, ‘Under such-.an approach, all systems with sigular
E would be fast unstable. Fortunately, not all per-
turbations make physical sense. For example, small
negative masses, inductances, etc. ordinarily do not
exist in practice. One way to restrict the class of
allowed parasitics is to simply agree on a system of
neighborhoods of the point (3) on the manifold L. 1In
fact, the system of neighborhoods along with the empty
set forms a (rather weak) topology on L; conversely,
any topology on L determines a system of neighborhoods
of (3). Thus we may equivalently restrict perturba-
tions by choosing some topology T" on L - perferably
one stronger than manifold topology.

vonsdier a point £ in L and choose a topology
on DQ*P. This induces a topology T' on L.

Definition: The pair (¢, T") is said to be fast
stable (relative to T) if 7" is at least as strong
as 1.

The definition says simply that a fast stable
system is one where solutions for each xg and u con-
verge in T under every perturbation of interest.

In order to avoid the difficulties in specifying
the topology T" explicitly, we could define it
indirectly by picking a further topology on pN*P and
letting the maps $xgu induce T". However, for the
robust feedback problem we can escape these apparent
complexities by again imposing T on DQ*P; hence,
™=T" We then we have that (¢, T") = (¢,7') is
always fast stable.

At first glance, this seems to trivialize the
whole. construction, but we are really interested in
stability of the closed-loop system formed by applying
the feedback law

u = Ky
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to (3). The matrix K maybe thought of as determining
a map

Ke L =T —> 1L (5)
where

I={feL|(E,A,B,C) reprsents £ =>

deg|Es - (A+BKC)| = rank E}

Hence K takes each system in its domain into a
corresponding closed-loop system which exhibits no
impulsive behavior (see [8]). The robust feedback
problem for a given ¢ e L is then just that of
characterizing the class of all K which render the
closed-Toop system (K(¢), T') fast stable or, equiva-
lently, which are continuous at & with respect to
T'. A1l we have really done here is to assume that
the open-loop system is fast stable and to initiate
the search for feedback gains which retain fast
stability. In other words, we have assumed that the
open-Toop model is ™"good" in the sense that its
solutions approximate physical reality under small
perturbations; for robustness we require the same from
the closed-loop system.

4. A Generic Solution

Definition: A system (3) with singular E is said to
be fast cyclic if, in the decomposition (4), Af is
cycliic,

Note that, since A¢ is always nilpotent, (3) is
fast cyclic if and only if Af has unit rank degeneracy
or, equivalently, rank E- = n-1, Clearly, this is ?
generic condition on L since it is so on RN(Z2n+mp
and since manifold topology on L is just quotient set
topology inherited from RU(ZN*MHP) . Tn fact, the same
is true on the topological subspace of L consisting of
points corresponding to singular E.

An even stronger result can be proven:
Proposition: Let T be standard distributional
topoTogy on DN*P and let .T' on L be induced by the
®xgu. Then, with respect to T', the fast cyclic
systems are open and dense in the topological subspace
of points with singular E.

Proof: As noted previously, T' 1is stronger than
manifold topology and the fast cyclic systems form an

open set. To show density, substitute Af - E-I for Ag
in (4). Then
1 .,-1
t(A, - = 1) q-1 . .
e f k —s 3 6(1-1)A1
i=1 f

follows from [5] in the T' sense where q is the index
of nilpotency of Af. Hence ¢xgu converges for each
Xgs u and the corresponding sequence (gy) converges in
T . 0

Actually, genericity holds when even stronger
topologies are chosen on DN*P, This demonstrates that
the fast cyclic systems account for practically every
case of interest in a very strong sense.

We now present a solution to the robust feedback
problem for this generic case. For simplicity assume
we are already in coordinates which decompose the
system as in (4).

Theorem: If (4) 1is fast cyclic then K retains fast

stability iff



g-1
AL+ Bchf)\Ker A > 0 (6)
Sketch of Proof: Let & be represented by (4) and
assume {¢, T') is fast stable. From [9] we have that
any T'-convergent net (E.) with £ —> £ can  be
represented by

e L +
xS ASEXS BSeu

+ B

feXf T Xf T gl

+C

y = CSEXS

fe’f

where {Ag.),{Bsc), etc. all converge and Af = lim Ag
is nilpotent. If Af = 0 then Af. is scalar and fast
stability requires Age — 0-. In order to keep the

fast value in the closed loop system,

I + BfKCs must be positive. Hence x¢ —> -« and each
dxqu converges. If Af # 0 and we are in coordinates
which put Ag into Jordan form, we already known from
{5) and [8] that the lower left element of I + BeKCs

is nonzero. A simple argument involving the charac-
teristic polynomial shows that Af — -= if and only
if that element (given by (6)) is actually positive., LI

eigenvalue negative

One approach to finding a complete solution to
the robust feedback problem might be as follows:

Conjecture: Let T' be a topology induced on L by the
dxpue 1nen £ is a point of continuity of the map K
iff there exists a T'-neighborhood U of £ such that K
is continuous at every fast cyclic point in U.

If the above conjecture is true, the analytical
robustness problem would be reducible to one primarily
algebraic in nature where the condition (6) is applied
throughout an open, dense subset of a relative
neighbood of g. It is no surprise that each topology
T on DQ*P would change the neighborhood over which (6)
is to be applied yielding a different class of robust
feedback gains for each type of convergence
considered.

5. Interpreting the Qutput Equations

In studying the problem of robust feedback in the
presence of parasitics it immediately becomes ciear
that the physical interpretation of the output
equation is a critical issue. For example, consider
the system discussed in [2]:

1 1 1 0 2
8 | x=}0 -1 ofx+]-1]u (7N

0 1 -1 -1 -1
y=[1 0 1Ix (8a)

Alternatively, we might “solve" for xp and x3 in terms
of x1 and u yielding

y = 2x (8b)
Equation {7) could also be reduced, but we may wish to
leave the "dummy" variables xz and x3 in the model in
order to study the effects of third-order perturba-

tions. For the nominal model, (8a) and (8b) are
equivalent, both giving the transfer function

T
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Suppose feedback u = Ky with K < -2 is applied to
{7}, If {8b) 1is used,it can be shown that K is
robust. However, [2] demonstrates that K is not
robust with respect to (8a). Since the only differ-
ence between the two cases is in their output equa-
tions, we must conclude that the two descriptions (8a)
and (8b) correspond to two very different internal
structures. Physically, (8a) and (8b) have completely
different meanings: In the first case sensors are
physically attached to variables xj and x3 feeding out
their sum while in the second case one sensor measures
x] and doubles it; x3 is not directly sensed. Note
that the equivaience of (8a) and (8b) breaks down when
(7) is perturbed, the relationships among xj, xp, and

x3 becoming differential rather than algebraic. These
more complex relationships are certainly more
realistic for the physical system.

The preceding example illustrates how crucial it
might be to use a singular representation rather than
a state-space one. One could further reduce (7) to
the form

. N
Xp =X tu

which, in conjunction with (8b), predicts that, say,
K= -3 is a perfectly good feedback gain. Unfortun-
ately, if the physics of the problem indicates that
(7) and (8a) constitute a more appropriate model, we
would be in danger of creating a horribly unstable
closed-loop system with an eigenvalue near +w.

In conclusion, we have seen that, just as in
state space theory, where a transfer function may not
be adequate to describe all internal behavior of the
(slow) system, in singular system theory there is a
type of (fast) internal behavior that a system may
have which is not captured by its transfer function.
Moreover, such behavior might not even be visible in
any state-space representation. This observation
lends more validity to arguments in favor of the
further development of singular system theory.
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