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Abstract

We reduce the problem of impulse elimination via state
feedback in singular differential equations to algebra. Our
results are developed for systems over an arbitrary Her-
mite domain. We show that the established theories for
the time-invariant and the real analytic time-varying set-
tings can be unified in this way. Besides the constant and
real analytic functions, several other function rings are
considered. Our algebraic theory is applied to these cases,
providing solutions to the impulse elimination problem for
classes of systems not previously studied. In particular,
our work allows the restriction of the feedback matrix to
certain function rings.

1 Introduction

We are interested in the problem of designing a state feed-
back law u = K (t)x for a time-varying singular differen-
tial equation

E (t)
.
x = A (t)x+B (t)u (1)

such that the closed-loop system

E (t)
.
x = (A (t) +B (t)K (t))x (2)

exhibits no impulsive transients. The matrices E, A, and
B are assumed to have entries in an appropriate set of
functions on R (possibly constant) with E (t) , A (t) ∈
Rn×n, B (t) ∈ Rn×m, and K (t) ∈ Rm×n. This problem
has been treated in a variety of contexts over the past 25
years [9], [15], [11], [12], [5]. For example, we originally
posed and solved the problem for the time-invariant (i.e.
constant matrix) case in [9].
For time-invariant systems, the fact that solutions of

(2) can exhibit impulsive behavior was originally estab-
lished in [13] and [14], Ch.22. One method of analysis is
based on the Weierstrass decomposition ([8], p.28, The-

∗This paper is a condensed version of the SICON article [1]. See
[1] for the proofs of theorems.

orem 3):.Given E,A with det(sE − A) 6≡ 0, there exist
nonsingular P,Q ∈ Rn×n such that

PEQ =

·
I 0
0 N

¸
, PAQ =

·
X 0
0 I

¸
,

where N is nilpotent. If N 6= 0, the solution of (1) con-
tains an impulsive term of the form

z = −
X

δ(k−1)Nkzo. (3)

More generally, when E (t) and A (t) are analytic func-
tions, it is shown in [4] that an expression similar to (3)
holds under mild assumptions

Since impulses must be interpreted as unbounded, con-
ventional notions of closed-loop stability dictate that K
be chosen to make (2) impulse free. For the time-invariant
case, we established a necessary and sufficient condition
([9], Theorem 6) under which such a matrix K exists.
This condition can be written

ImE +AKerE + ImB = Rn.

Since then, two alternative proofs of this result have ap-
peared. (See [11], Theorem 2.5.1 and [12], Theorem 3-
2.1.)

The work of Campbell and Petzold [4] extended the
theory of singular systems (1) to the time-varying set-
ting, where E, A, and B are matrices over the real an-
alytic functions on R. More recently, the corresponding
impulse elimination problem has been solved by Wang in
([5], Theorem 4.1). In this case, necessary and sufficient
conditions for impulse elimination are

ImE (t) +A (t)KerE (t) + ImB (t) = Rn ∀t,

rankE (t) = constant.

Our contention is that the impulse elimination prob-
lem is primarily a problem in algebra. Indeed, after care-
ful examination (and some modification), the arguments
in [5] can be reduced to algebraic manipulations over a
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certain class of rings. Pursuing this idea not only leads
to a unification of the time-invariant and analytic time-
varying theories, but also yields a more general frame-
work in which the impulse elimination problem for other
classes of time-varying systems can be solved with little
extra effort.

An important consequence of our approach is that it
allows the entries of K to be restricted to certain func-
tion rings (although E, A, and B must share the same
restriction). Hence, we are able to solve a wide variety
of constrained feedback problems which have not been
considered in the literature.

Our algebraic theory is the subject of Sections 2 and
3. In Section 4, we apply our results to various types of
time-varying singular systems.

2 Algebraic Preliminaries

Let R be a commutative ring (with identity). If
x1, . . . , xk ∈ R, a Bezout identity is an equation of the
form

P
aixi = 1 (ai ∈ R). For a matrix M ∈ Rp×q, let

rankM = max{k M has a nonzero (4)

kth-order minor}

and

ρM = {max k the kth-order minors of M (5)

satisfy a Bezout identity}.

Obviously, rankM ≥ ρM for any M. It can be shown
that rankM and ρM are invariant under left and right
unimodular transformations. (See [2], p.25.) If R = R,
then rankM = ρM. We denote this common value by
rankRM.

Consider the set G of all triples (P,Q,D) , where
P,Q,D ∈ Rn×n and P,Q are unimodular. Define the
binary operation

(P1,Q1,D1)∗(P2, Q2,D2) = (P2P1, Q1Q2,D1Q2 +Q1D2) .

It is routine to verify that G has the structure of a group.
Now consider pairs (E,A) , where E,A ∈ Rn×n. We may
define a right group action on the set of all (E,A) accord-
ing to

(E,A) · (P,Q,D) = (PEQ,P (AQ+ED)) . (6)

The orbit of particular (E,A) is the set of all pairs
³ eE, eA´

such that
³ eE, eA´ = (E,A) ·(P,Q,D) for some P,Q,D. It

is easy to verify that the set of all orbits forms a partition
of Rn×n ×Rn×n.
Following the terminology of Campbell and Petzold [4],

we say (E,A) is in standard canonical form, if

E =

·
I 0
0 N

¸
, A =

·
X 0
0 I

¸
, (7)

where N is strictly upper triangular with E,A identically
partitioned. Similar to their notion of "analytic solvabil-
ity" for systems (1), we say (E,A) ∈ Rn×n ×Rn×n is al-
gebraically solvable, if its orbit under (6) contains a mem-
ber in standard canonical form. (The degenerate cases
(I,X) and (N, I) are also allowed.) We say that (E,A)
has unit index if the orbit of (E,A) contains a member
in standard canonical form with N = 0. It is clear from
the definitions that algebraically solvability are invariant
under the group action (6).
The question arises whether a unit index orbit can con-

tain a member in standard canonical form with N 6= 0.
Fortunately, the next result answers this question in the
negative.

Theorem 1 Suppose (E,A) has unit index and (E,A) ·
(P,Q,D) is in standard canonical form (7). Then N = 0.

In practice, algebraic solvability may be difficult to es-
tablish, so we introduce a more direct condition that will
suit our purposes just as well. We say that (E,A) is pre-
solvable if any one of the following conditions holds:
PS1) ImE +AKerE = Rn,
PS2) ImE ∩AKerE 6= 0,
PS3) KerE ∩KerA 6= 0.
Algebraic solvability and standard canonical form are re-
lated to existence and uniqueness of solutions of (1), as
discussed in [4]. However, presolvability is a purely alge-
braic condition, having no simple connection to the dy-
namics of (1). Nevertheless, we can prove the following.

Theorem 2 1) Algebraic solvability implies presolvabil-
ity.
2) Presolvability is invariant under the group action (6).

If (E,A) has unit index, it turns out that the matrix D
plays no essential role in establishing standard canonical
form. This is made precise in the next theorem.

Theorem 3 If (E,A) has unit index, then there exists a
unimodular Q ∈ Rn×n such that, for every D ∈ Rn×n,
there exists a unimodular P ∈ Rn×n which yields standard
canonical form (7) with N = 0.

For an arbitrary commutative ring R, we can establish
necessary conditions under which (E,A) has unit index.

Theorem 4 If (E,A) has unit index, then
1) rankE = ρE,
2) ImE +AKerE = Rn,
3) (E,A) is presolvable.

Let B ∈ Rn×m. The group action (6) may be extended
to triples (E,A,B) according to

(E,A,B) · (P,Q,D) = (PEQ,P (AQ+ED) , PB) . (8)
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In [15] we introduced the concept of "impulse control-
lability", which is fundamental to the study of state feed-
back in singular systems. We can adapt this idea to the
algebraic setting by taking its feedback characterization
as the definition. We say that K ∈ Rm×n is impulse
eliminating, if (E,A+BK) has unit index. The triple
(E,A,B) is impulse controllable, if there exists an im-
pulse eliminating K.

Theorem 5 Impulse controllability is invariant under
(8).

Theorem 6 If (E,A,B) is impulse controllable, then
1) rankE = ρE,
2) ImE +AKerE + ImB = Rn.

3 Pencils over an Hermite Do-
main

We say R is an Hermite domain if it is an integral domain
and, for every a, b ∈ R, there exist u, v, x, y ∈ R such that
ux + vy = 1 and ax + by = 0 ([3], p.469). It should be
noted that the definition of an Hermite domain varies in
the literature. For example, [16] gives a definition (p.345)
which is different from, but is implied by, the one given
in [3]. In particular, every Bezout domain is Hermite
([3], Theorem 3.2), and, therefore, every principal ideal
domain, field, etc. is also an Hermite domain. For the
remainder of this section, our standing assumption is that
R is an Hermite domain (as in [3]).
One advantage of working in an Hermite domain is

that matrices over R can be triangularized: For any
M ∈ Rp×q (p 6= q), there exists a lower triangular
L ∈ Rmin{p,q}×min{p,q} and a unimodular Q ∈ Rq×q such
that

MQ =


£
L 0

¤
, p < q·

L
0

¸
, p > q

.

A similar result, in which KerM plays a special role,
was established for real analytic functions in [6]. The
arguments used in [6] are essentially algebraic and can be
adapted to any Hermite domain.

Theorem 7 Let M ∈ Rp×q. If rankM = k > 0, then
there exist L ∈ Rp×k with rankL = k and a unimodular
Q ∈ Rq×q such that

MQ =
£
L 0

¤
. (9)

Corollary 8 Let M ∈ Rp×q.
1) If ρM = p, then there exists a unimodular Q such that

MQ =
£
I 0

¤
.

2) If rankM = k, then there exist L ∈ Rk×k with

rankL = k and unimodular P and Q such that

PMQ =

·
L 0
0 0

¸
.

3) If rankM = ρM, then there exist unimodular P and
Q such that

PMQ =

·
I 0
0 0

¸
.

4) If rankM = ρM = p, then there exists L ∈ R(q−p)×q

such that
·
M
L

¸
is unimodular.

Another advantage of working in an integral domain is
that, if M ∈ Rp×p, x ∈ Rp, and Mx = 0, then either x =
0 or detM = 0, since (detM)x = (adjM)Mx = 0.We
will make frequent use of this fact in developing our main
results.
The next result is complimentary to Theorem 4, part

2).

Theorem 9 If ImE + AKerE = Rn, then (E,A) has
unit index.

The next theorem, complementary to Theorem 6, is our
main result.

Theorem 10 If
1) rankE = ρE,
2) ImE +AKerE + ImB = Rn,
3) (E,A) is presolvable,
then (E,A,B) is impulse controllable.

Let P1, P2,Q,Q1, Q2, A22, B2, bA, bB be given. Then, for
any K1,W, Y, T, V with V and

U =

· bA bB
W Y

¸
unimodular, we set

K2 = Q2

·
W Y
0 I

¸ ·
I 0
T V

¸
Q−11 .

It follows that

P2P1(A22 + B2K2)Q1

=

· bA 0
0 0

¸
+

·
0 bB
I 0

¸ ·
W Y
0 I

¸
= U

·
I 0
T V

¸
is unimodular. Setting K =

£
K1 K2

¤
Q−1 guarantees

that (E,A+BK) has unit index.
We note that the map π (K1,W, Y, T, V ) = K is one-

to-one. Indeed, if we choose K in the range of π, then K1

is uniquely determined, and setting L = Q−12 K2Q1 yields·
W Y
0 I

¸ ·
I 0
T V

¸
=

·
L11 L12
L21 L22

¸
,
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so
T = L21, V = L22, Y = L12L

−1
22 ,

W = L11 − L12L
−1
22 L21.

Hence, π may be considered a parametrization of the set
of all impulse eliminating K with unimodular V (i.e. the
2,2 block of Q−12 K2Q1). Unfortunately, this may not be
a complete parametrization of I, as the example

E =

·
0 0
0 0

¸
, A =

·
1 0
0 0

¸
, B =

·
0 0
1 0

¸
illustrates. Here, direct calculation shows that I consists
of all matrices of the form

K =

·
k11 k12
k21 k22

¸
with k12 a unit. However, π only yields those matrices of
the form

K =

·
W + Y T Y V

T V

¸
with V and Y units. Although π does predict that k12 =
Y V must be a unit, it does not allow k22 = V to be a
non-unit, in spite the admissibility of such values. Hence,
the range of π is a proper subset of I.

4 Applications to Time-Varying
Singular Systems

In this section, we consider time-varying differential equa-
tions

E (t)
.
x = A (t)x+B (t)u, (10)

where the entries of E, A, and B belong to a ring of real-
valued functions on R. We assume E (t) , A (t) ∈ Rn×n
and B (t) ∈ Rn×m. The interesting case occurs when E (t)
is singular on a subset of R. Such systems have been stud-
ied at length under the assumption that E, A, and B are
either constant [7] or real analytic [4], [5]. We will show
that these cases fit into our algebraic framework, and ex-
amine certain additional classes of functions that can be
treated in our setting. Our work does not apply to prob-
lems where E, A, B, and K are allowed to have arbitrary
entries in Cn, since Cn is not Hermite.
In studying (10), it is useful to consider a change of

variables of the form x = Q (t) z, where Q (t) is every-
where nonsingular and where both Q and Q−1 belong to
a given class of functions. Assuming differentiability of
Q, direct substitution yields the equivalent system

P (t)E (t)Q (t)
.
z = P (t) (A (t)Q (t) (11)

−E (t)
.
Q (t))z + P (t)B (t)u,

where P (t) is also nonsingular for every t. (Note the re-
lationship of (11) to the group action (8).)
Another important consideration in working with

any kind of differential equation is that of solvability.
Roughly, this means that (10) exhibits existence and
uniqueness of solutions over a large class of forcing func-
tions u. In the case of equations based on matrices over
the real analytic functions A (R), Campbell and Petzold
[4] define (E,A) to be analytically solvable if, for every
Cn function u, the system

E (t)
.
x = A (t)x+ u (12)

has at least one C1 solution x on R and no two distinct
solutions coincide for any t. They then proceed to show
that analytic solvability is equivalent to the existence of
analytic nonsingular matrices P and Q that put (11) into
standard canonical form. Hence, analytic solvability is
equivalent to algebraic solvability.
In the time-invariant setting, analytic solvability of (10)

reduces to the condition that the matrix pencil (E,A) be
regular — i.e.

det (sE −A) 6≡ 0. (13)

(See [8], pp.45-49.) From [8], p.28, Theorem 3, (13) is
equivalent to the existence of nonsingular P,Q ∈ Rn×n
that put the pencil into Weierstrass canonical form:

PEQ =

·
I 0
0 N

¸
, PAQ =

·
X 0
0 I

¸
, (14)

where N is nilpotent. Since
.

Q = 0, (14) and (7) are the
same, so (13) is equivalent to algebraic solvability.
In addition to solvability, we note that the unit index

property is a natural concept in both the constant and
real analytic settings, occurring iff N ≡ 0.
In order to study the impulsive behavior of singular

systems, we must adopt a more sophisticated viewpoint
based on distribution theory. In (12) we may investigate
the consequences of applying an input u, which is arbi-
trary C1 up to time t = t0 and drops abruptly to 0 at
t0. As discussed in [14], Chapter 22, the resulting solu-
tion exists as a distribution and is, in fact, the unique
distribution x satisfying x (t) = 0 for t < t0 and

E (t)
.
x = A (t)x+ δt0E (t0)x0, (15)

where δt0 is the unit impulse and x0 = limt→t−0
x (t) .

Equation (15) gives a precise meaning to the natural re-
sponse of (10) with arbitrary initial conditions.
Our principal objective is to find a matrix K (t) , whose

entries reside in the same ring of functions as the entries
of E, A, and B, and such that the state feedback law
u = K (t)x yields a unit index closed-loop system

E (t)
.
x = (A (t) +B (t)K (t))x+ δt0E (t0)x0. (16)

Thus we are simultaneously treating a wide variety of
constrained feedback problems, which have not been con-
sidered in the literature.
In order to apply our results to (10), we first need to
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identify a function ringR that satisfies the conditions that
1) R is an Hermite domain, 2) R is closed under differenti-
ation, 3) solvability in the classical sense implies presolv-
ability, and 4) the analytic and algebraic notions of the
unit index property coincide. Note that it follows from
4) that the analytic and algebraic notions of impulse con-
trollability must also coincide. Once these conditions are
established, we are guaranteed that the results of Sections
2 and 3 apply to systems over R. In particular, Theorems
6 and 10 give necessary and sufficient algebraic conditions
under which (10) is impulse controllable. It remains only
to translate conditions 1) and 2) from Theorems 6 and 10
into analytic terms.
For the remainder of this paper, we restrict ourselves

to subrings R (with identity) of A (R) . Properties 1) and
2) will have to be established case-by-case. On the other
hand, 3) and 4) hold automatically for A (R) as a con-
sequence of previous results. Indeed, condition 3) may
be established by examining the proof of Theorem 2 in
[4]. In the light of our Theorem 7 and its corollaries,
the arguments used by Campbell and Petzold carry over
verbatim to R, demonstrating that analytic solvability
of (E,A) guarantees algebraic solvability and, therefore,
presolvability. To establish 4), suppose (E,A) is analyti-
cally (and algebraically) solvable. If N ≡ 0, then (E,A)
has unit index in the algebraic sense with D = −

.
Q. Con-

versely, suppose (E,A) has algebraic unit index. Then,
from Theorem 3, we may choose Q such that setting
D = −

.
Q yields P that achieves (14) with N = 0. Hence,

the two notions of unit index coincide. This establishes
that our algebraic theory applies to any Hermite subring
of A (R) which is closed under differentiation.
Time-Invariant Systems: To treat time-invariant

systems
E

.
x = Ax+Bu,

set R = R. Since R is a field, it is Hermite. Viewing R as
the set of constant functions, it is closed under differentia-
tion. We therefore conclude that Theorems 6 and 10 spe-
cialize to the characterization of time-invariant impulse
controllability first established in [15]. The constructions
used in proving Theorems 6 and 10 thus constitute an al-
ternative to the known proofs of this result, as presented
in [9] Theorem 6, [11], Theorem 2.5.1, and [12], Theorem
3-2.1.
General Analytic Systems: It is easily shown that,

for R = A (R) , [6], A (R) is Hermite. (In fact, it is shown
in [10], Theorem 1.19 that A (R) is a Bezout domain.) R
is closed under differentiation, so conditions 1) and 2) of
Theorems 6 and 10 are necessary and sufficient for im-
pulse controllability. It remains to link the algebraic con-
ditions to analytic conditions on E (t) , A (t) , and B (t) .

Theorem 11 Conditions 1) and 2) of Theorems 6 and
10 hold for R = A (R) iff rankRE (t) is constant and
ImE (t)+A (t)KerE (t)+ImB (t) = Rn for every t ∈ R.
Theorem 11 shows that Theorems 6 and 10 specialize to

Theorem 4.1 of [5] for systems over the real analytic func-
tions.
Now we apply our theory to classes of time-varying sin-

gular systems (10) which have not been previously stud-
ied.
Polynomial Systems: Let R = R [t] be the polyno-

mials on R with real coefficients. R [t] is a subring of A (R)
containing 1 and a principal ideal domain, so it is Her-
mite. R [t] is closed under differentiation. Theorem 11
applies to R [t] without modification.
Periodic Systems: Let P (τ) be the analytic func-

tions on R with period τ > 0. (τ need not be the funda-
mental period.) P (τ) is a subring of A (R) containing 1
and is closed under differentiation.

Theorem 12 P (τ) is a Bezout domain.
It follows from Theorem 12 that P (τ) is an Hermite do-
main. It can be further shown that P (τ) is a princi-
pal ideal domain. Theorem 11 applies to P (τ) without
modification.
Systems Analytic at ∞: Let A∞ (R) be the sub-

ring of A (R) consisting of all functions analytic at ∞.
(x analytic at∞ means that x

¡
1
t

¢
is analytic at 0.) From

the chain rule,

.
x

µ
1

t

¶
= −t2 d

dt

µ
x

µ
1

t

¶¶
,

so A∞ (R) is closed under differentiation.
Theorem 13 A∞ (R) and P (τ) are isomorphic.
It follows from Theorems 12 and 13 that A∞ (R) is an
Hermite domain.
The conditions of Theorem 11 must be augmented to

handle analyticity at ∞.

Theorem 14 Conditions 1) and 2) of Theorems 6 and
10 hold for R = A∞ (R) iff

rank
R

E (t) = rank
R

E (∞) ,

ImE (t) + A (t)KerE (t) + ImB (t)

= ImE (∞) +A (∞)KerE (∞) + ImB (∞)
= Rn

for every t ∈ R.

5 Conclusion
Our work demonstrates that the solutions of the state
feedback impulse elimination problem, as originally devel-
oped for the time-invariant and time-varying cases in [9]
and [5], share a common algebraic basis. Once exposed,
this structure lends itself naturally to numerous general-
izations, requiring only a small amount of analytic effort
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to turn the problem into algebra. The rings discussed in
this paper are only a few of the many possibilities. For
example, it is easy to show that similar conclusions hold
for the real analytic functions with an isolated singularity
at ∞, those with a pole or removable singularity at ∞,
those with a zero of order at least k at a fixed point in
R∪ {∞} , rational functions with no pole in R, etc. Per-
haps the greatest challenge is to fully exploit our theory
by proposing an Hermite domain which is not PID, Be-
zout, etc. We leave this question for further research.
Acknowledgement: The author wishes to thank Nigel
Boston for his many helpful suggestions during the course
of this research.
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