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Abstract
We consider linear, time-invariant state-space systems un-
der high-gain state feedback. The analysis is couched in
terms of singular system theory and Grassman manifolds.
Our work is distinguished from that of other authors by
the fact that we do not allow a gain-dependent state coor-
dinate change. Simple necessary and sufficient conditions
are proven under which a singular system is a high-gain
limit of a given state-space system. It is shown that the
feedback matrix achieves a limit on an appropriate Grass-
manian, so infinite gains constitute well-defined mathe-
matical objects. The special cases of minimum-order sta-
ble and zeroth-order limits are studied in depth, includ-
ing an analysis of solution behavior. Finally, the classical
"cheap control" problem is interpreted within the context
of our results.

1 Introduction
Consider the linear, time-invariant state-space system

ẋ = Ax+Bu, (1)

where A ∈ Rn×n and B ∈ Rn×m. For any K ∈ Rm×n, we
may apply state feedback

u = −Kx+ v, (2)

yielding the closed loop system

ẋ = (A−BK)x+Bv. (3)

In this paper, we are interested in the “high-gain limits”
of (3) as kKk→∞.We seek a characterization of all such

∗This paper is a condensed version of the SICON article [1]. See
[1] for the proofs of theorems.

limits for a given system (1). In addition, we will special-
ize our results to certain important classes of limits, and
develop conditions under which a limit of (2) constitutes
a well-defined system in its own right. We will then apply
our results to the classical “cheap control” problem.
Numerous references deal with the issue of high gain

limits under state feedback. For example, early papers
such as [2] treat high gain in a classical singular pertur-
bation context. Much of this work can be viewed largely
as a special case of our results. The details will be pro-
vided in Sections 4-6.
More recent efforts, such as [3], [4], and [5], study high

gain limits in great depth. However, this body of work is
fundamentally different from ours in that a K-dependent
coordinate change is allowed, while our approach admits
no coordinate change. The consequences of the two ap-
proaches are strikingly different. Indeed, consider the
1st-order system

.
x = u with feedback u = −kx+ v. Our

analysis (and that of [2]) dictates that the closed-loop sys-
tem be written − (1/k) .x = x− (1/k) v, yielding x = 0 in
the limit. Note that controllability is progressively weak-
ened as k increases, and lost entirely for k = ∞. This
is precisely the effect one would observe in practice, with
the variable x representing the fixed (i.e. K-independent)
state of the plant.
On the other hand, the analyses in [3], [4], and [5] al-

low a K-dependent coordinate change. In this case, the
kth closed-loop system becomes pkqk

.
z = −pkkqkz + pkv,

where x = qkz, and pk, qk are arbitrary nonzero se-
quences. For any g 6= 0, setting pk = 1 and qk = 1/ (kg)
yields the controllable limit z = gv. The problem here is
that the loss of controllability is masked by the coordi-
nate change z = kgx, which scales the physical state x
progressively higher as k →∞.
Another phenomenon that can occur with a k-

1



dependent coordinate change is illustrated by the example

.
x =

·
0 1
0 0

¸
x+

·
0
1

¸
u, (4)

u = − £ k2 1
¤
x.

Let x = Qkz and premultiply (4) by Pk, where Pk, Qk are
nonsingular. Then

PkQk
.
z = Pk

·
0 1
−k2 −1

¸
Qkz, (5)

which is equivalent to a system of the form

Xk
.
z = z. (6)

If Qk = I,

Xk =

· − 1
k2 − 1

k2

1 0

¸
→
·
0 0
1 0

¸
, (7)

irrespective of Pk. On the other hand, setting Pk = I and

Qk =

·
1
k 0
0 1

¸
yields

Xk =

· − 1
k2 − 1

k
1
k 0

¸
→ 0. (8)

Substituting (7) and (8) into (6) produces vastly different
results. In particular, (7) produces impulses, while (8)
does not. (See [16], Ch. 22.) Losing track of the impulsive
behavior in (8) is again due to the progressive redefinition
of the state.
Our approach disallows coordinate changes of the state

x. A moment’s reflection indicates that, in our setting,
the high-gain limits of (3) form a subset of those in [3],
[4], and [5]. Nevertheless, characterization of these "fixed
coordinate" limits requires an independent analysis. Al-
though the limits we obtain must satisfy the necessary
conditions proven in ([3]) and ([4]), we will establish al-
ternative conditions, which are arguably simpler and both
necessary and sufficient. We will also conduct a careful
analysis of stable and "zeroth order" limits, which have
heretofore not been explicitly studied in the literature, at
least at this level of generality.
One of our objectives is to establish results which are

dual to those we developed for observers in [7]. To this
end, much of our work relies on the theory of differentiable
manifolds. (See e.g. [10].)
Throughout the paper, we assume for convenience that

rankB = m. For a system where this is not the case, an
input coordinate change bu = Tu can be used to reduce
the problem to our framework.

2 Preliminaries
Before we can talk about the limits of (1), we need some
elementary results from singular system theory. Consider
the matrix differential equation

Eẋ = Fx+Gu, (9)

where E,F ∈ Rn×n and G ∈ Rn×m. We assume the ma-
trix pencil (E,F ) is regular — i.e. ∆(s) = |sE − F | 6≡ 0.
Since premultiplication of (9) by a nonsingular matrix

M does not affect the dynamics of (9), it is natural to
identify systems (9) related by such a transformation. On
the other hand, right multiplication of E and A amounts
to a coordinate change, so we avoid such transforma-
tions, retaining the coordinate-dependent nature of con-
ventional state-space theory. We claim that this approach
leads to a simpler theory overall.
With these ideas in mind, we couch our problem

in terms the Grassman manifold Gn
¡
R2n+m

¢
, denoting

points in Gn
¡
R2n+m

¢
by [E,F,G] . Setting

L(n,m) =
½
[E,F,G] ∈ Gn

¡
R2n+m

¢
∆ 6≡ 0

¾
is consistent with the quotient structure of Gn

¡
R2n+m

¢
,

since premultiplication of
£
E F G

¤
by a nonsingular

M scales ∆ by a nonzero constant. Since L(n,m) is an
open, dense submanifold of Gn

¡
R2n+m

¢
, it is an analytic

manifold of dimension n (n+m) . We studied L(n,m) in
[6].
We will make frequent use of the Weierstrass Decom-

position ([9], pp. 24-28): For any regular pencil (E,F ),
there exists nonsingular M,N such that

MEN =

·
I 0
0 Ef

¸
MFN =

·
Fs 0
0 I

¸
, (10)

where Ef is nilpotent. Ef and Fs are unique up to sim-
ilarity. Define the order of (E,F ) to be ord (E,F ) =
deg∆ (i.e. the dimension of Fs) and the index ind (E,F )
to be the smallest integer q ≥ 1 such that Eq

f = 0.
The functions ord and ind may be consistently applied
to points in L(n,m) :

ord [E,F,G] = ord (E,F ) ,

ind [E,F,G] = ind (E,F ) .

We will need to consider solutions of (9). To this end,
we review some basic facts from the theory of distribu-
tions. (See e.g. [11]). Let D be the space of C∞ functions
φ : R → R with bounded support, and let D0 denote the
dual space of D. A distribution f is any member of D0.
Each locally L1 function f (i.e. L1 on bounded intervals)
may be considered a distribution, since it determines a
functional φ→ R

fφ. The unit impulse δ is defined to be
the evaluation functional < δ, φ >= φ(0). Every distrib-
ution has a derivative defined by < ḟ, φ >= − < f, φ̇ >;
thus < δ(i), φ >= (−1)iφ(i)(0). A sequence of distribu-
tions fk is said to converge weak * to f if hfk, φi→ hf, φi
for every φ ∈ D. One advantage of working with distrib-
utions is that differentiation is a weak*-continuous opera-
tion. Besides weak* convergence, we will sometimes refer
to uniform convergence fk → f on an interval in I ⊂ R.
This simply means that there exist locally L1 functions
gk, g defined on I such that < fk, φ >=< gk, φ >,<
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f, φ >=< g, φ > for all φ with support in I and gk → g
uniformly. Let U ⊂ R be the largest open set such that
suppφ ⊂ U implies < f, φ >= 0. The support of f is
supp f = Uc. Let D0+ be the distributions with support
in [0,∞).
In order to apply arbitrary initial conditions x0 to (9),

it is convenient to consider the augmented system

Eẋ = Fx+Gu+ δEx0, (11)

which yields a unique solution x ∈ D0+. (See [16], Ch.22
for details.). Let exp (Fs) : R→ Rdeg∆×deg∆ be given by

exp(Fs)t =

½
etFs , t ≥ 0
0, t < 0

,

and define the state-transition matrix

Φ = N

 exp(Fs) 0

0 −
q−1P
i=0

δ(i)Ei
f

M. (12)

The state transition matrix relates to the system (11) as
follows:

Theorem 1 1) E
.

Φ = AΦ+ δI
2) The solution of (11) is x = ΦEx0 +Φ ∗Gu.
3) The system (11) is asymptotically stable iff ΦE is
bounded and decays asymptotically to 0.

3 The Manifold of Closed-Loop
Systems

The present paper closely follows the development of [7],
where the dual problem of the limiting behavior of state
observers under high gain feedback was studied. One
might speculate that the state feedback case should be
obtained from [7] merely be taking the “transpose” of all
theorems. While some theorems do transfer over in this
way, much of the state feedback theory is different. One
way to see that this must be true is to observe that, in
both cases, systems are identified when they are related
by left multiplication by a nonsingular M. In contrast,
pure transposition of the observer problem would require
right multiplication by M, leading to a K-dependent co-
ordinate change, which we explicitly avoid.
The closed-loop systems (3) for a given plant (1) imbed

naturally into L(n,m) via the map K → [I,A−BK,B].
We denote the image of Rm×n under this map by Cr.
We further denote the closure of Cr in L(n,m) by C and
consider the set Cs = C - Cr. C may be regarded as the set
all limits of (3), Cr the full-order limits (i.e. ordinary state
space systems) and Cs the singular limits (i.e. generalized
state space systems).

Theorem 2 1) C = {[X,XA − Y,XB] ∈ L(n,m)
rank

£
XB Y

¤
= m}

2) C is a regular submanifold of L(n,m) with dimension
nm.
3) Cr is a (relatively) open, dense submanifold of C
4) [X,XA− Y,XB] ∈ Cs iff rank

£
XB Y

¤
= m with

X singular.

4 Stable and Zeroth Order Limits
In this section, we study certain subsets of C which have
special significance. In particular, we examine those sys-
tems in C which are stable (i.e. all eigenvalues satisfy
Reλ < 0) and those with order 0. We begin with a dis-
cussion of an important submanifold of C, which will help
simplify the development. Let

CI = {[X, I,XB] ∈ C} .
CI is simply the set of points in C with no eigenvalue at
0. Each point in CI corresponds to a system

X
.
x = x+XBv + δXx0 (13)

with state transition matrix determined by X
.
Φ = Φ+δI.

From Theorem 2, part 1), we obtain

CI = {[X, I,XB] ∈ Gn
¡
R2n+m

¢
rank

£
XB XA− I

¤
= m}.

The next result gives several alternative characterizations
of CI .
Theorem 3 For any X ∈ Rn×n, the following are equiv-
alent:
1) rank

£
XB XA− I

¤
= m

2) Ker
£
X I

¤ ⊂ Im · B A
0 −I

¸
3) Im (AX − I) ⊂ ImB
4) There exists U ∈ Rm×n such that AX +BU = I.

Theorem 3, part 4) indicates that CI is nonempty iff£
A B

¤
has full rank — i.e. iff 0 is a controllable mode

of (1). In this case, the affine set

W =

½·
X
U

¸
∈ R2n×n AX +BU = I

¾
will prove central to our theory. The next result gives a
precise relationship between CI and W.

Theorem 4 1) [X, I,XB] ∈ CI iff there exists U ∈
Rm×n such that

·
X
U

¸
∈W. In this case, U is unique.

2) Let Kk ∈ Rm×n. Then [I,A−BKk, B] →
[X, I,XB] ∈ CI as k → ∞ iff A − BKk is nonsingu-
lar for large k and (A−BKk)

−1 → X. In this case,
−Kk (A−BKk)

−1 → U.
3) CI is a (relatively) open, dense submanifold of C, dif-
feomorphic to W.
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Since closed-loop systems in CI (or, alternatively, W)
have no eigenvalue at 0, CI contains all stable limits and
all zeroth order limits.
Restricting to CI yields a surprising result related to

controllability of the closed-loop system (13).

Theorem 5 Let [X, I,XB] ∈ CI . Then rankX ≥ n−m
with equality iff XB = 0.

Theorem 5 states that high gain limits of (3) where the
rank of X degenerates maximally have the unfortunate
property that the input v exerts no control whatsoever on
the system. This is undoubtedly a limitation for control
problems where closed-loop tracking to a reference input
is required.
Now we consider the special cases of minimum-order

stable and zeroth order limits. By applying essentially
the same arguments as in [6], several results are obtained
immediately. These are summarized in Theorems 6 and 7.
The first is based on the following construction. Choose
any nonsingular matrix T such that

T−1B =

·
0
I

¸
, (14)

and let " eA11 eA12eA21 eA22
#
= T−1AT, (15)

where eA22 ∈ Rm×m. If (A,B) is stabilizable,
rank

"
λI − eA11 − eA12 0

− eA21 λI − eA22 I

#
= n

for every λ with Reλ ≥ 0. Hence,

rank
h
λI − eA11 eA12 i = n − m (i.e.

³ eA11, eA12´
is stabilizable). We may thus choose Λ such thateA11 − eA12Λ is stable, and set

X = T


³ eA11 − eA12Λ´−1 0

−Λ
³ eA11 − eA12Λ´−1 0

T−1, (16)

U =

·
−
³ eA21 − eA22Λ´³ eA11 − eA12Λ´−1 I

¸
T−1.

(17)

By direct calculation, AX + BU = I, so
·
X
U

¸
∈ W

and ξ = [X, I, 0] ∈ CI . Note that ind ξ = 1 and³ eA11 − eA12Λ´−1 is stable, so ξ is stable. From Theorem

1, part 1), the state transition matrix is

Φ = T

 ³ eA11 − eA12Λ´ exp³ eA11 − eA12Λ´
−Λ

³³ eA11 − eA12Λ´ exp³ eA11 − eA12Λ´+ δI
´
(18)

0
−δI

¸
T−1,

so

ΦX = T

 exp
³ eA11 − eA12Λ´ 0

−Λ exp
³ eA11 − eA12Λ´ 0

T−1. (19)

Letting · ex01ex02
¸
= T−1x0,

we obtain the solution of (13):

x = T

·
I
−Λ

¸
exp

³ eA11 − eA12Λ´ ex01.
Theorem 6 1) Cs contains a stable point iff (A,B) is
stabilizable.
2) If ξ ∈ Cs is stable, then ord ξ ≥ n−m with equality iff
ξ = [X, I, 0] , where X has the structure (16).

We are also interested in the zeroth order closed-loop
limits

C0 =
½
ξ ∈ C ord ξ = 0

¾
.

C0 corresponds precisely to those ξ = [X, I,XB] ∈ CI
with X nilpotent. From Theorem 1, part 1), the state
transition matrix is

Φ = −
Xq−1

i=0
δ(i)Xi, (20)

so the solution of (13) is

x = ΦXx0 +Φ ∗ v = −
n−1X
i=0

Xi+1Bv(i) −
n−1X
i=1

δ(i−1)Xix0.

The system corresponds to successive differentiation of
the input v plus a “noise” term.

Theorem 7 1) C0 is nonempty iff (A,B) is controllable.
2) If (A,B) is controllable and m = 1, C0 is a singleton.
3) If (A,B) is controllable, m = 1, ξk ∈ Cr, and all eigen-
values λik of ξk satisfy |λik| → ∞, then ξk converges to
the unique point in C0.
4) If (A,B) is controllable and m > 1, C0 is uncountable
and unbounded (as a subset of W).
5) Every ξ ∈ C0 satisfies ind ξ ≥ n

m .

Next, we consider Cr approximations [I,A−BKk, B]
to certain points in Cs. This is important in applications,
since points with singularX can only be achieved as limits
as kKkk → ∞ in (3). In view of (11), the closed-loop
system (3) can be written equivalently as

(A−BKk)
−1 .

x = x+(A−BKk)
−1

Bv+δ (A−BKk)
−1

x0,
(21)

yielding state transition matrix

Φk = (A−BKk) exp (A−BKk) (22)
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and solution

xk = Φk (A−BKk)
−1 x0 +Φk ∗Bv. (23)

We are interested in finding a sequence {Kk} that yields
not only convergence of [I,A−BKk, B] in C, but also the
strongest possible convergence of the forced and natural
response in (23).
We begin by consider stable systems.

Theorem 8 Let ξ ∈ Cs be stable with ord ξ = n−m, and
let

Kk =
h eA21 + kΛ eA22 + kI

i
T−1, (24)

ξk = [I,A−BKk, B] .

Then
1) ξk → ξ,

2) Φk (A−BKk)
−1 is uniformly bounded,

3) Φk → Φ uniformly on [ε,∞) for every ε > 0,
4) Φk → Φ weak*,
where Φ is given by (18).

The results of [2] can be interpreted in terms of Theo-
rems 6 and 8. In [2], the special case

Kµ = − (1/µ)K (25)

is considered, where K is a fixed matrix and µ > 0 is
small. Adopting (14) and (15) and settingh eK1

eK2

i
= KT,

it is assumed in [2] (equations (32) and (33)) that eK2 andeA11− eA12 eK−12 eK1 are stable. Under these conditions, (25)
constitutes an alternative to (24). Indeed, define

Γµ = µ eA22 + eK2, ∆µ = eA11 − eA12Γ−1µ ³
µ eA21 + eK1

´
,

and note that Γµ and∆µ are stable for small µ > 0. Block
matrix inversion reveals

X = T

"
∆−1µ

−Γ−1µ
³
µ eA21 + eK1

´
∆−1µ

−µ∆−1µ eA12Γ−1µ
µ
³
Γ−1µ + Γ−1µ

³
µ eA21 + eK1

´
∆−1µ eA12Γ−1µ ´ #T−1

→ T


³ eA11 − eA12 eK−12 eK1

´−1
0

− eK−12 eK1

³ eA11 − eA12 eK−12 eK1

´−1
0

T−1,
which is the same as (16) with Λ = eK−12 eK1. Note that,
in [2], only asymptotic stability for each µ > 0 is actually
proven.
Now consider zeroth order systems ξ ∈ C0. Theorem 7,

part 1), guarantees that (A,B) is controllable. From [15],
pp. 342-343, there exist eK ∈ Rm×n, w ∈ Rm such that

³
A−B eK,Bw

´
is controllable with A − B eK nilpotent.

Thus there exists a nonsingular N such that

N−1
³
A−B eK´N =


0 1

. . .
. . .
. . . 1

0

 ,

N−1Bw =


0
...
0
1

 .
Theorem 9 Let

βik =

µ
n
i

¶
kn−i, bKk =

£
β0k · · · βn−1,k

¤
,

Kk = eK + w bKkN
−1,

ξk = [I,A−BKk, B] .

Then
1) ξk converges to a point in C0,
2) Φk → Φ uniformly on [ε,∞) for every ε > 0,
3) Φk → Φ weak*,
where Φ is given by (20).

Note that, in Theorem 9, boundedness of the natural
response matrix Φk (A−BKk)

−1 was dropped. This is
a consequence of the appearance of impulses in Φ when
ξ ∈ C0 and X 6= 0. We can, in fact, prove a stronger
result, which demonstrates the disastrous effect of driving
the system to a limit with ord ξ < n−m.

Theorem 10 Let m < n, 1 < p ≤ ∞, and ξk ∈ C
be stable for all k. If the eigenvalues λik of ξk satisfy
maxi {|λik|}→∞ as k →∞, then kΦkXkkp →∞.

5 The Limiting Compensator
The state feedback law (2) may be written

£
I K

¤ · u
x

¸
= v. (26)

This suggests that compensators of the form (2) are nat-
urally identified with points [I,K] in the Grassmanian
Gm (Rm+n) . Consider the open, dense submanifolds F =
f−1 (C) and Fr = f−1 (Cr) of Gm (Rm+n) , and let Fs =
f−1 (Cs) . The next result establishes basic properties of
state feedback (26).

Theorem 11

1) Fr =
½
[I,K] ∈ Gm (Rm+n) K ∈ Rm×n

¾
2) Fs =

½
[Z1, Z2] ∈ F detZ1 = 0

¾

5



The properties of f guarantee that, if Kk is any se-
quence of feedback matrices such that the closed-loop
systems (3) converge in C, then the sequence [I,Kk] also
converges in Gm (Rm+n). By Theorem 11, degeneration
of (3) to a point in Cs occurs iff [I,Kk] converges to a
point in Fs. In other words, the limiting compensator al-
ways exists, and it is singular iff the limiting closed-loop
system is singular. Compensators in Fs are not physi-
cally realizable, since they correspond to feedback laws of
the form Z1u = −Z2x + v with Z1 singular. Yet, as a
mathematical object, each compensator in F determines
a well-defined closed-loop system.
For the special case of minimum-order stable limits, as

in Theorem (6), we can obtain the form of Z1 and Z2
explicitly.

Theorem 12 If ξ = [X, I,XB] is given by (16), then
f−1 (ξ) =

£
0,
£
Λ I

¤¤
.

We conclude this section by examining behavior of the
input function u under high-gain feedback. For simplicity,
we will only consider the case where v = 0. If we apply
the feedback gains Kk to (3), then both u and x depend
on k, and are related by the feedback law uk = Kkxk.
In Theorems 8 and 9, we established cases under which
the state-transition matrix Φk converges in two different
topologies. More generally, consider the linear subspace

D00 = C [0,∞) + span
n
δ,

.

δ,
..

δ, . . .
o
⊂ D0+,

where C [0,∞) is the set of continuous functions on R
with support in [0,∞) . Both weak* convergence and uni-
form convergence on every [ε,∞) correspond to specific
topologies on D0. It is easy to show that both make D0 a
topological vector space.

Theorem 13 Suppose D0 is given a topology that makes
it a topological vector space. If [I,A−BKk, B] →
[X, I,XB] ∈ CI and Φk → Φ in D0, then uk → UΦx0
in D0.
Theorem 13 can be extended to v 6= 0 through choice of

an appropriate space of inputs v and exploiting the prop-
erties of the convolution operator. We leave the details
to the reader.

6 Application to Cheap Control
A classical problem in the theory of linear-quadratic op-
timal control is the “cheap control” problem, where an
input function u∗ (t) is sought to minimize the cost

J(ε) =

∞Z
0

xTx+ εuTudt

subject to (1), with fixed initial condition x0 and small
ε ≥ 0. For ε > 0, this problem has been extensively stud-
ied (e.g. see [13], [8], [12], [14]). The solution is obtained

by constructing the unique positive definite symmetric
solution P (ε) of the algebraic Riccati Equation

P (ε)A+ATP (ε)− 1
ε
P (ε)BBTP (ε) + I = 0.

Then, for each x0, the optimal u and x are related by the
feedback law u∗ = − (1/ε)BTP (ε)x∗,yielding the closed-
loop systemµ
A− 1

ε
BBTP (ε)

¶−1
.
x
∗
= x∗+δ

µ
A− 1

ε
BBTP (ε)

¶−1
x0

(cf. (21)).
For ε = 0, we adopt (14) and (15), let" eQ11 eQ12eQT

12
eQ22

#
= TTT,

and let Γ be the unique positive definite symmetric solu-
tion of the reduced Riccati equation‘

Γ
³ eA11 − eA12 eQ−122 eQT

12

´
+
³ eA11 − eA12 eQ−122 eQT

12

´T
Γ

−Γ eA12 eQ−122 eAT
12Γ+ eQ11 − eQ12 eQ−122 eQT

12 = 0.

Setting

Λ = eQ−122 ³AT
12Γ+ eQT

12

´
(27)

leads to values of X, U, and Φ according to (16), (17),
and (18). It is shown in [14], Corollary 2.6.1, that J (0) is
minimized, subject to (1), by x∗ = Φx0 and u∗ = UΦx0.
Furthermore, [14], Theorem 2.7.1 indicates thatµ

A− 1
ε
BBTP (ε)

¶−1
→ X

as ε→ 0+. These facts are now interpreted in the context
of the present paper.

Theorem 14 For each ε ≥ 0, let ξ∗ε ∈ Cr be the optimal
closed-loop system in the cheap control problem. Then
ξ∗ε → ξ∗0 in C as ε→ 0+, where ξ∗0 is stable and ord ξ

∗
0 =

n−m. The limiting system ξ∗0 is determined uniquely by
the singular compensator

£
0,
£
Λ I

¤¤ ∈ Gm (Rm+n) as
in Theorem 12, where Λ is given by (27).
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