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INTRODUCTION

We consider the problem of minimizing the cost functional

% Q N} fx
J(x,u) = I {xT uT] T dt (1)
0 N Rjfu
subject to the singular system constraint
EX = AXx + Bu (2)

where E.A € Rnxn‘ B e RTM
NT R

Certain fundamental questions need to be answered concerning the
relationship between the matrices Q, N, R, P, E, A, and B and the optimal

Q N
, E is singular, R > 0, and = Q.

* x
pairs (x ,u ). The most obvious of these follow.
1) Under what conditions does there exist at least one optimal

(x*.u*) and when is it unique?

2) To what function spaces do the (x*,u*) belong?

3) When can an optimal control u* be implemented according to a
feedback law on x*?

4) How can one compute the optimal pairs efficiently?

For the case N = 8 and Q > 0, we answered questions 1)-3) in. [1].
Question 4) is treated for the general case by Bender and Laub in [2] using

necessary conditions derived by Jonchkeere ([3]. Jonchkeere also
investigates conditions under which his necessary conditions exhibit
existence and uniqueness of solutions. The question of existence of an

* %
optimal pair (x .u ) when N # 0 or when Q is singular has remained open and
motivates our present work.

As a first attempt at a solution, we reformulate the optimization

-1
problem by "completing the square" In J{x,u). Let G = u + R NTx.

3-0-8rR "%, and A = A - BR INT. Then we may rewrite the cost (1) and

system constraint (2) as
~ = TA »T . A ~
J{x,u) = j X 'Qx + uw Ru dt, Ex = Ax + Bu (3)
o

This yields an equivalent form which can be handied by the methods of {11

as long as 6 > 0 and det(siE - 3) # 0. If either condition fails to hold,
some new theory is required.

Shl



HILBERT SPACE FORMULATION

We first note that, as in [1}, we must take J = « whenever the
integrand of (3) is not in L2 (e.g. if it contains impulses). Let 2+ be
the set of all distributions with support in [0,«) and let 2, be the

nim
g

subspace of 2 consisting of all elements 2z satisfying Cz = 0, where

Q N
CTC = T
N R

+
]. Also let 2 be the quotient space of $2+m with respect to

Do,
A
<[zl],[22]> = ‘[021 ¢ cz, dt (4)

where [z] € 2 is the equivalence class -<determined by z, and
£,[0,%) = {deP| J(q) < =}. We can prove the following

Lemma Equipped with the inner product (4}, xa[o,w) is a Hilbert space.

Consider now the system equation {2). We define X¥(x,) € 2 to be the
equivalence class generated by the natural response of (2) due to the
initial condition x,. Also let

A= {[z]l zZ = [ﬁ] and x is the forced response of (2) due to u}

The original optimization problem is easily seen to be equivalent to the
problem of minimizing 3(w) = <w,w> over N(xq) + A.

Theorem If the system (2) is stabilizable and impulse controllable
(see [ 1), (K(xo) + &) n £,[0,=) # ¢ and (N(xo) + A} n £,[0,%) is a closed
linear variety in 22[0,w).

The Hilbert space projection theorem thus implies that a unique optimum
exists in 22[0.w) under the same conditions as stated in [1]. Hence, an

* *
optimal pair (x ,u ) exists for the original problem under these same
* *
conditions. The pair (x ,u ) in general is not unique, however, since the

*
optimum w € Za[o,w) may be generated by many sclutions pairs of (2).
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