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ABSTRACT

Optimal regulation of linear systems of the form EX = Ax+Bu, with E
singular and quadratic cost, is considered. It is shown that the nonunique-
ness of the optimizing feedback matrix can be exploited to give a closed
loop system which remains stable in the presence of small perturbations
{structurally stable). Although the problem of structural stability is not
fully understood in general, a complete solution is given for an important
special case.

INTRODUCTION
Systems of the form
Ex = Ax+Bu (1

have been treated in [1]-{5]. 1In [4] it is demonstrated that (1) may be
decomposed into two subsystems

Xg = ASxS+Bs u (2a)

Af Xp = xf+Bf u Ny (2b)
of dimension r and n-r respectively, where Af is nilpotent and x = Xs].It
is shown in [5] that subsystem {2b} may have impulses present in the 5hforccd
solution. We have proven in [2] that all impulses in (2b) may be eliminated
by applying a feedback matrix to the system if and only if

ImA, + Ker A, + Im A = T (3)

We have also proven in [3} that an input u* exists which minimizes
e 2
3= il ez )
o

with respect to (1) if and only if (2a) is stabilizable and (3) holds. In
this case, u* is unique and can be implemented with a feedback matrix K
which is not unique. (Impulses must necessarily be eliminated for

optimality.) We are interested in distinguishing among the various choices
of K.

The following example illustrates the problem:

o1 [¢]
. L 5
0,1 % =x+ [[lu )
Such a system may arise from a singular perturbation problem involving
-e 1, . ]
= (
o el x=x+ [ (6)

where € > o, For u = o and x{0) = [?], (6) has the solution
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As € = o+, x_ = [_6]. The limit of X _ can be shown to be the solution of
(5) for the Same u®and x (0] . Followi%g [3], optimality is achieved for all
feedback matrices of the form

K= [a V2o - 1] (8)

where a # o, If we choose a > o the solution of the closed-loop system
converges as € > o . However, for a < o, the closed loop system has one
eigenvalue tending to + o, Clearly, this is an undesirable situation. We
would like to identify, in the general case, the class of feedback matrices
which are not only optimal at e = o, but which also yileld convergence of
solutions as € +~ o .

PROBLEM FORMULATION

Actually, we will consider a more general type of perturbation than the
one described above. Our main assumption will be that, whatever perturb-
ation of (1) exists, the corresponding solutions of (1) converge as € + o
for every possible value of x(o). This, after all, is saying nothing more
than that (1) is a "good" idealization of the physical system being modelled

Definition: We say that a feedback matrix K yields a structurally stable
closed-loop system if the closed-loop solutions converge under all perturb-
ations which guarantee convergence of solutions of (1).

Symbolically, the situation can be described as follows: Applying
feedback K to (1) yields a system which can be decomposed as in (2} to give

Xsk = AskXsk Bkt (9a)

Mex *ex = XextBe® (b
The closed-loop system is structurally stable if and only if etA'l is
convergent whenver . tA converges. (Here we are only considering per-
turbations which make E nonsingular. The general case can also be handled
in this framework, but with increased notational complexity.)

The central problem is that of determining which values of K from the
optimal class yield a structurally stable system, Structural instability is
clearly unacceptable since the idealized closed-loop model would not
accurately predict the behaviour of the physical system in question.

THE CASE OF CYCLIC Af

When A, in (2b) is cyclic at € = o, a solution is readily obtained. We
are able to prove the following series of results leading up to an
algorithm for choosing K:

1) There exists a subspace S™with S*@KerE = R' such that the class of
optimizing feedback matrices is the linear variety in formed by

adding to any optimal K all matrices K satisfying

Ker K= S* (10)
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2) As a result of 1), if the cluss of optimal feedback matrices is nonempty,
it contains at least one member that yields structural stability.

3) 1If coordinates are chosen in (2b) so that A, is in Jordan form at € = o,
a matrix K. which is optimal for (2b) alone yields structural stability
if and only if

bn—rKl > o for n-r odd (l1a)
b k. <o for n-r even (11b)
b n-r 1
_ 1 B ce
where B, = : » Kg = [kl kn—r]'
bn~r

4) If e-dependent matrices E,A., and A, are given with A (o) = A, (o) and
E(o)x = A (0o)x a closed-lo0p optimil system, then the solutidns of

Ex = Alx %onverge if and only if those of Ex = A2x do also.

Utilizing 1) - 4}, we have obtained an algorithm for finding an optimal
feedback matrix which yields structural stability once any optimal matrix is
known :

a) Starting with (1), change coordinates to decouple the system as in
(2) with Af in Jordan form at € = o.

b) Alter the {r+l)thcolumn of the given optimal K to satisfy (11) by
adding an appropriate K satisfying (10). The altered K is also
optimal and is guaranteed to yield structural stability.

c) Transform back to the original coordinates.
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