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ABSTRACT

A theory of observability for systems E§=Ax+Bu, y=Cx, E singular,
which complements that for controllability, already existing in the litera-
ture, is presented. A natural extension of the state-space duality theorem
is shown to hold, and an observer, which detects impulsive behavior, is
studied.

1. INTRODUCTION
In this paper we discuss generalizations of the concepts of controll-

ability and observability to systems of the form

.

Ex
y

Ax + Bu (1)
Cx (2)

where E and A are nxn matrices, B is nxn and C is kxn. According to the
development in Gantmacher [1], (1) and (2) may be decomposed (after a

change of basis) according to x = i%J where
f

Xg = Asxs + Bsu (3)
Afif = Xp ¥ Bfu (4)
y = Csxs + Cfxf (5
if
T = deg|Bs-A| (6)

then Xg is an r-vector and Af is nilpotent. The unique solution of (4) is

Xp = - qil AiB ui (7)
f . ff
i=0

where q is the index of Af and u' denotes the ith derivative.
Inevitably, when considering such a system, one is faced with the
problem of interpreting "inconsistent" initial conditions, as they are

termed by Campbell [2], which may be thought of as points in the state
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space through which no solution passes for a given u. It can be shown
that, in practice, such initial values may be achieved if the system opera-
tes in the presence of disturbances. This situation might result, for
example, from the addition of a disturbance input v to the right side of
(1) which, in a worst case analysis, would be multiplied by the identity
matrix. Hence, by assigning t=0 to the instant when the disturbance dis-
appears, any initial condition can resuit. It can also be shown (see [2],
for example) that inconsistent initial conditions may lead to impulses and

their derivatives in the natural response. Specifically,

xg=- ) 87 alx )
i=1
where Xo¢ is the component of the initial condition corresponding to sub-
system (4). The impulses that appear in this deterministic approach to
disturbances, reflect the differentiating structure of the system as deter-
mined by (7). Analogously, in a stochastic approach, this structure would
result in high frequency amplification of noise.

The first attempts at extending the concepts of controllability and
observability to the system (1) were made by Rosenbrock [3] and later by
Verghese et al. [4]. Theirs is a frequency domain approach, controll-
ability and observability being described in terms of infinite input and
output decoupling zeros. Our work is closer to that of Yip-et al. [5],
who takes a time-domain approach, but does not account for inconsistent
initial conditions. This fact does not cause any significant problems
when it comes to aspects of controllability, since there the reachability
of states for t>0 is the key issue. Observability, on the other hand,
depends heavily on initial conditions. Ignoring inconsistent initial con-
ditions leads to a definition of observability which is not the algebraic
dual of controllability. These difficulties will be dealt with in
Section 2.

In Section 3 we will discuss the control and observation of the im-
pulsive behavior of (1). This will lead to system properties which do not
appear in state-space theory. The results in Section 3 will be applied in
Section 4 to the problem of constructing a dynamic observer which repro-
duces the impulsive portion of the internal variable x, given only input
and output information. Finally, we will discuss the observer's use in a

feedback compensation scheme which eliminates impulsive behavior.
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2. OBSERVABILITY
We begin by reviewing the definition of controllability as given in
[5]. Let

r-1 i

R = iZO Im(A_B) (9)
q_l i

Re = _2 Im(Afo) (10)
i=0

R = RS ® Re (11)

R is the controllable subspace corresponding to (1). Let (1) have initial

condition x =.§0§T and let c%! be the space of g-1 times continuously
0f
differentiable functions on [0,«).

Definition
System (1) is controllable if for every 1>0 and Xgs weR™ there

exists ueCd™ such that x(T)=w.

Theorem 1 (Yip)
Let >0 and x,, welR™. There exists ueC?1 such that x(1)=w iff weR.

Corollary
The system (1) is controllable iff R=R".

We would like to define observability so that the dual nature of con-
trollability and observability is preserved. In order to achieve this and
to account for all initial conditions, it becomes necessary to restrict
the system under consideration to [0,«). In the state-space case this
would not change the form of the system equation since all solutions are
continuous. However, in our case the situation is complicated by the
existence of distributions.

Let x_and y_ be the distributions which 1) are equal to x and y on
(0,°), 2) vanish on (-«,0), and 3) contain at the origin the same im-
pulses and their derivatives as x and y. Then x, and y, satisfy the

equations
Ex, = Ax, + Bu + 8Ex(0) (12)

Cx, (13)

~
+
1]
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In fact, the solution of (12) is unique within the space of distributions
which vanish on (-«,0). This formulation allows us to speak of system

trajectories resulting from various initial conditions without having to

consider the disturbances that generate those initial conditions.

We are now in a position to define observability. Let
r-1 i
Ns = .rn Ker(CSAS) (14)
i=0
W i
e = N Ker(CAp) {15)
i=0
N o= Nge N (16)

N is the unobservable subspace corresponding to (1). Let Cg"l be the space

of q-1 times piecewise continuously differentiable functions on [0,®).

Definition
The system (1) is observable if knowledge of uecg'l, Y and y(07) are

sufficient to determine x(0).

Theorem 2
Let u=0 in (12). Then y =0, y(07)=0 iff x(0 )eN.

Corollary
The system (1) is observable iff N=0.

The theorem can be proven by combining (8) with the decomposition of
(12) and (13). Since the system is linear, Theorem 2 is equivalent to the
statement that, for any given u, two initial conditions, whose difference
lies in N, give rise to the same output. Hence, the corollary follows
easily. Later we will see that observability, as we have defined it, is

the algebraic dual of controllability.

3. TIMPULSE CONTROLLABILITY AND OBSERVABILITY
Since it is unique to systems with a singular E matrix, impulsive
behavior in x warrants special attention. In this section we outline a
theory which emphasizes the control and observation of impulses. To
facilitate the development, we denote by x[t1] the impulsive part of x at

t=T. Similarly, let y[T] be the impulsive part of y at 7. Then
Ex[T] = Ax[T] - GTE(x(T*) - x(t)) (17)
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y[t] = Cx[1] (18)

where éT is the unit impulse at t. It can be shown that the solution of
(17) is unique within the space of distributions with point support at T.
Decomposition of (17) reveals that

i~

B ALY - x() (19)

qil
x:[1} = 8
£ i=0
Hence, x can only contain impulses of the form (19). We would like to know
which impulses of the class determined by (19) can actually be generated by

choosing u appropriately, and which can be detected given only output in-

formation.
Definition
System (1) is impulse controllable if for every t¢IR, weR"" T there
exists uecg—l such that
al o1
x[t] = .Z GT Agw
i=1
Let
q'l i
1= izl Im(AgB ) (20)

We call 1 the impulse controllable subspace. This name is motivated by

the following result.

Theorem 3
Th i 31 such th —qil s 1 ALy ige qil sl Ay et
ere exists ue P such that x[7] = . o iff . el
i=1 i=1
Corollary
The following statements are equivalent:
1) System (1) is impulse controllable.
2) Ir = Im Af'
3) There exists an mxn matrix K such that deg\Es»(A+BK)l = rank E.

Theorem 3 can be proven in a manner similar to Theorem 2. The equiva-
lence of conditions 2) and 3) in the corollary, was established in [6] where
the problem of eliminating impulses due to inconsistent initial conditions

(or, equivalently, due to arbitrary disturbances) was explored. The
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corollary of Theorem 3 indicates then that all impulsive transients can be
eliminated with linear feedback iff they can be generated with an appro-

priate u.

We now consider the dual of impulse controllability.

Befinition

System (1) is impulse observable if, for every TeR, knowledge of

y[t] is sufficient to determine x[t].
Let

q-1 .
I = ) Ker(cfA;) (21)
i=

In is the impulse unobservable subspace.

Theorem 4
y(7]=0 iff x(t")-x()el .

Corollary
The following statements are equivalent:
1) System (1) is impulse observable,
2) In = Ker Af.
3)  There exists an nxk matrix K such that deg|Es-(A+KC)|=rank E.

The equivalence of 1) and 3} can be proven by the following duality

theorem. Consider the dual system

- 1 b
Ex=Ax+Cu (22)

y = B x (23)

Theorem 5
1) System (1) is controllable iff the dual system is observable.
2) System (1) is impulse controllable iff the dual system is impulse

observable.

The proof of this theorem is somewhat complicated, involving the re-
lationship among the subspaces RS, Rf, N’S, etc. for the two systems. The
duality result serves as partial motivation for the exact definitions which

we chose for observability. In the next section we will see that there is
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in fact a more pragmatic justification for our choice of definitions.

4. AN IMPULSE OBSERVER
In this section we consider the problem of constructing a dynamic
system which utilizes input and output information from (1) and generates
impulses equal to those of x, as given by (19). 1In particular we are

looking for an impulse observer of the form

Ez = Gz - Ky + Hu (24)

such that the estimate z exhibits the same impulsive behavior as x. Hence,

we would like to find values for G, X, and H so that the error
e =2 - x (25)

contains no impulses.

The error e is governed by
Ee = 6z - Ky - Ax + (H-B)u (26)
so if we choose H=B and G=A+KC then

Ee = (A+KC)e (27)

es iff (1) i

The problem of stabilizing the observer still needs to be addressed.
That this can be accomplished iff subsystem (3) is observable, follows from
Theorem 5 and the results of [6]. Under mild conditions then a,stable
impulse observer can be constructed for the system (1) which identifies
internal high frequency behavior in (1), due to random disturbances.

The results of [6], which deal with elimination of impulses via linear
feedback when x is available, can now be augmented to handle the case where

only y is available. To this end we consider the compensation scheme
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u *@{/\— Plant ’ y

{ e z Impulse |
] Observer
: 1

1

where the plant is characterized by (1). The closed loop system may be

modelled in terms of e and x yielding

I oTx o+ BF 3F || x| M
0 E _éJ i Lo A+KC—“—-e_l ' _OJu 28

since u=Fz=Fx+Fe. Because of the triangular structure of (28), and the

results of [6] and this paper, impulse controllability and impulse observ-
ability of (1) are necessary and sufficient to guarantee that (28) exhibits
no impulsive behavior whatsoever. The eigenvalues of the closed-loop sys-
tem are simply those of the plant and observer individually. They can be

placed arbitrarily iff subsystem (3) is both controllable and observable.

5. CONCLUSIONS

The key to understanding the dual nature of controllability and ob-
servability clearly lies in the observation that all initial conditions may
occur if the system operates in the presence of disturbances. This idea
has led us to a natural extension of the duality theorem from state-space
theory. We have also seen that, being unique to systems with a singular E
matrix, impulsive behavior motivates the study of certain aspects of con-
trollability and observability which do not appear when E is nonsingular.
Finally, the problem of reorganizing system structure by applying feedback,
so that internal differentiations are eliminated, has led to the concept of
impulse observer. We have shown that such an observer can be used in a
feedback loop in the same way that a standard observer is used in state-
space theory. We believe that many other familiar results may be general-

ized in this way with novel interpretations occurring in many instances.
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