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Abstract

A simple proof of the separation principle for systems

th £ m o » ¢ coat i mee,
with noise-free measurements and quadratic cost is pre-

sented. The proof is entirely deterministic in nature and
is based on Lyapunov’s theorem.

1 Introduction

The celebrated LQG separation principle has long been
considered one of the cornerstones of modern control
theory. In contrast to the simplicity of the theorem
statement, the task of penetrating the existing proofs
of this result in the continuous-time case can be daunt-
ing to all but a few specialists in the area of stochastic
systems. This statement is particularly surprising in
view of the fact that in a fundamental sense the essen-
tial ingredients of the LQG problem are not inherently
stochastic. Indeed, it has been demonstrated (see e.g.,
[1]) that the LQG problem can be recast into an en-
tirely equivalent deterministic setting. What has been
lacking, however, is a corresponding deterministic proof.
This is the point of our paper.

The starting point for our work is the proof of the Sep-
aration Theorem supplied by Russell (see [2], Chapter 6,
page 377), which is stochastic, but based on Lyapunov
theory. In his proof the optimal compensator is obtained
relative to the class of observer-based systems with order
equaling that of the plant. Using an approach similar
to Russell’s, we present in Section 4 a simple determin-
istic proof, establishing optimality with respect to the
class of all linear, time-invariant, finite-dimensional sys-
tems of arbitrary order. In our paper we consider only
the case of disturbance-free measurements, although an
equally elegant proof can be constructed for the case of
measurements with disturbance.

In preparing the ground work for our result, a num-
ber of side issues are discussed. For instance, an optimal
estimation problem for systems with noise-free measure-
ments is formulated and observed to be dual to a certain
singular optimal control problem (see [3]). We believe
that this duality approach to the estimation problem is
new and distinct from the traditional treatments of the
problem in the stochastic systems literature.
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2 Problem Formulation

Consider the class of completely controllable and ob-
servable Linear Time-Invariant (LTT) systems

Az + Bu; z(0) =
i © %)

where £ € R", u € R™, and y € R?. Assume that C
has maximal rank i.e., p[C] = p, and is already in the
form [0 I,]. Note that this is not a restriction since an
appropnate similarity transformation can always yield
this form.

Given nonzero initial conditions zo, we desire to reg-
ulate the system (1) in such a way that the quadratic
cost functional

(e <]
J = / zTQz + uTRudt
0

is minimized. Since, minimizing this cost functional
gives rise to optimal compensators which parametrically
depend on the unknown initial conditions, we consider
the normalized cost functional

= / /00 27Qzx + uTRu dt dVa(zo) (2)
1, Jo

R = {zo €R": 27 8z0 < 1} .

This cost functional may be interpreted as the “average
value” of the quadratic cost J as g is confined to a -
weighted euclidean ball of radius one, with & = £T > 0.
Note that in (2) dV,(zo) is the differential volume in
R".

The class of compensators considered are the com-
pletely controllable and observable LTI dynamic systems

= Ez + Ly; z(0) =

3
u =Gz + Hy

where z € R and [ is any positive integer. Note that
the minimality assumption on (3) is not a restriction
since the order [ is not fixed. It is further assumed that
Q=QT> 0 and R = RT > 0. Moreover, the pair
(A,+/Q) is required to be detectable. It is possible to
write the cost J in a more explicit form. To do this, we
note that the closed-loop system equations are given by
the unforced system

(4] = a[2]ie=[%] @



4z [ 4+ BHC BG
= LC E

which has the solution
[ ': ] = e*'Bz, (5)

where BY = [I, 0]. Incorporating (5) in the expression
for J, we may write

J = f / T BT A" AeA By dt dVia(so)
1o VO

GTRHC GTRG ©)

Moreover, using the trace operator, we write

A = [Q+CTHTRHC C’rHTRG]

s o]
J=Tr [ / BT ATt AAB dt / zozd dv,,(zo)] .
0 flo

This expression for J can be simplified further by noting
that

/ zozd dVn(zo) = X!
Qo
where §, is a real positive constant given by

— 27"% .
T (detZ)sn(n +2)T(2)

ﬁn =1,2,3,...

and I'(-) is the gamma function (see [4], Section 5.5 for
details).

Note that §, is simply a positive scalar and can be
dropped from the cost without altering the optimization
problem. Finally, we may (after some algebra) write the
cost as

J = Tr[MT] @)
ATM + MA + A =0 ®)
1‘=[g g] ©)

and V denotes ™!,

The fact that the cost (7) is finite and nonnegative can
be established by the following argument. The control-
lability of (1) implies that there exists a control ufg, )
which steers zo to the origin. Indeed, this steering can
be done in a way that (z,u) € LZ, . Moreover, by
the obervability assumptions on both the plant and the
compensator, we have that the pair (A, C) is observable

where
I, 0 T
HC G z

cl®
2 |-
Hence, we conclude that the pair (z,2) € Lf._'_, which

implies A4 is a stable matrix. Moreover, A and I' are
symmetric positive semidefinite matrices, respectively.

B
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2.1 Statement of the Problem

In view of the above formulation, we are now ready to
state the precise optimization problem. The problem
we consider is that of minimizing the cost J over all sta-
bilizing compensators given by (3) subject to the con-
straint (8); i.e.,
min  J = Tr [MT]
(.E,L,G,H)

subject to (8).

For future reference, we name the above problem the
Deterministic Linear Quadratic (DLQ) Problem. Our
strategy for obtaining the solution of this problem will
be as follows: First, we present the solutions to two
distinct problems-namely an optimal control and an op-
timal estimation. Subsequently, we demonstrate via a
Lyapunov-based separation principle that the separate
solutions of these two problems joinly provide a minini-
mizing solution to the DLQ problem.

3 Candidate Optimal Compen-
sator

In this section, we discuss two different optimization
problems. The first problem considered is an opti-
mal control problem whereby an optimal gain matrix
is sought. The second problem consists of an optimal
estimation problem where an optimal estimate of the
system state is required. Subsequently, we present a
candidate optimal compensator which is based on these
two solutions.

3.1 Optimal Control Problem

The first problem is a version of the well-known linear
quadratic state feedback problem, in which it is assumed
that the complete state = is available to the controller
u; i.e., consider the completely controllable LTI system

z = Az + Bu; z(0)==zg

with the controller u given by u = Fz, FF € R™*", The
required optimal control problem is then formulated by
considering the cost functional

00
Jo = / / 2TQz + uT Ru dt dV,(z)
20 JO

and minimizing it with respect to the gain matrix F. It
is easy to show that the unique optimal gain F'* is given
by

F* = -R'BTk (10)

where K is the unique positive semidefinite solution of
ATK + KA — KBR™'BTK + Q@ = 0. (11)

Moreover, the optimal cost is given by J¥ = Tr (KV).
Indeed, it can be shown that the cost J. can be ma-
nipulated in the same way the cost J was so that



Jo = Tr [M.V] where
(A+BF)"M.+ M(A+BF)+Q+ FTRF =0

Then the fact that F* is the unique minimizing solution
follows by noting that

(A+BF)' (M.~ K)+(M. - K)(A+BF)+FTRF =0

where ' = F — F*. Moreover, (A + BF) is a stable
matrix. Hence, by Lyapunov’s theorem [5], (M, —K) >
0. Hence, we have

Jo=J! =Tr[(M.— K)V]>0 YV F # F* .

3.2 Optimal Estimation Problem

The second problem that we consider is an optimal esti-
mation problem where an optimal estimate of the state
of a LTI system is sought. It is shown that this problem
is dual to a singular optimal control problem [3].

To state the precise problem, consider the completely
observable LTI system

Az ; z(0) =z
Cz

where 2 € R™, y € R?. As before, we assume that
C has maximal rank and is already in the form [0 I,]).
Note that systems with a known input term appearing
in either part of (12), or with p[C] < p, may be reduced
to the form (12) by redefining the output y. Also, it is
important to note that the observability assumption is
not restrictive. Indeed, if system (12) is not observable,
one can always transform (12) to observability canonical

form
A= [

where the pair (A~11,C~'1) is observable, and simply pro-
ceed to state the problem in terms of the observable
subsystem.

Furthermore, attention is restricted only to estimates
given by

r =
y =

(12)

/in 0 ] = =
- . C =
A A [& o]

& = H(y)
where, H : Dyt — Di¥ belongs to the class of LTI causal
and contiuous estimation operators. Here, D" denotes
the k—dimensional space of distributions with support
in [0, 00) (see e.g., [6]).
It is shown in (7] that this class of operators is pre-
cisely the set of convolution operators with kernels in
the space of distributions. Hence,

g = Hxy

where * denotes the convolution operator as defined
in [6) and H € D:,'*xp.
Just how well we estimate the state z(¢) may be quan-

tified by means of the cost functional

J. = / / eTe dt dV,(zo) (13)
Qe JO
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e =ezxp(A)xg — H * Cexp(A)zg
exp(A):{O fort <0

et fort>0.
Similar to our previous demonstration, the cost J, may
be written in the form

fee)
Jo = Tr / EVET dt
1]

E =exp(A) — H *Cexp(A) . (14)

Finally, we define the optimal estimation problem as
the minimization of the cost J, when H ranges over

D.}.,, subject to (14). Note that we assign +oo to.J,.
when E € Dit, — L2, .. This is well-justified in view

of Proposition 1 in [8].

3.3 Duality

We are now in a position to expose a dual relation be-
tween the optimal estimation problem that was stated
above and a certain optimal control problem. To begin,
we observe the following relabellings of the quantities
used in the formulation of this problem; i.e., A = AT;
B=CT,;U=-HT; X = ET; Q = V. Thus, we have

00 ~
J, = Tr/ XTOx dt
0

X = exp(A) + exp(A)B+U . (15)

Evidently, minimizing the cost J. as U ranges over
D}, subject to (15) is dual to solving the primal opti-
mal estimation problem. It turns out that this problem
is related to a problem that we are more familiar with.
To clarify, let zI; = [0,...,0,1,0,...,0], where the *»
entry is 1. Also, partition the matrix U as

U = [ Uy, UuUs, Un ]

where u; € RP*1. Then, we can write

X = [x17 T2, tﬂ]
z; = e:cp(fi) 2o; + ezp(fi)I;‘*u,-
for all ¢ = 1,2,...,n. With some matrix algebra, we

may write the cost J,. as

>

Jo =
i=1
0 ~
5 = / 27 Qz; dt (16)
0
z; = A:c,- + f?u,-; 2:(0) = xi0 .

Hence, minimizing J. with respect to U can be reduced
to minimizing each J; with respect to u;. Observe that
each optimization is independent; hence, it suffices to
find the general solution of (16).

At this point, we simply present the results of the op-
timal estimation problem. These results are obtained by



first solving the dual singular optimal control problem
and then simply translating the results (via the dual-
ity assignments) to obtain the solution to the primal
estimation problem. The full detail of this analysis is
interesting in its own right and will be reported in a
future paper.

3.4 Optimal Estimation Results

In order to present the results, we partition the matrix
A into 4 blocks such that A;; € R(*-P)x(n=p) A,, ¢
RP*P, Similarly, we partition the V matrix into 4 blocks
such that Vi3 and V53 have the same dimensions as A;;

and Ags, respectively. Then given that z € R*P, we

have

2 = Az + Ey; 20)=0 (17)

£ = G,z + Huy (18)
A: = Au +63A21 (19)
E, = A;2406,A;,—-A,0, (20)

— | In-p
6. = [ "] (21)
_.9'
H, = [ L ] (22)
6, = —(PiAL +Via)Viz'. (23)

Moreover, P, is obtained as the unique positive definite
solution of

AP+ PAT + V11— 0,VnOT =0, (24)

3.5 Candidate DLQ Compensator

Based on the two previous solutions, we present a can-
didate for the optimal compensator. To do this we need
to partition the B matrix into 2 column blocks such
that the first block B; € R®~?*™ and the second block
B, € RPX™_ Then, we have that

' = n-p (25)
E* = A, +B,G" (26)
L' = A;2+0,422— A0, +B,H* (27)
G = F*'G, (28)
H* = F*H, (29)
B, = B +6,B;. (30)

The above formulas describe the complete structure
of the candidate optimal compensator. Evidently, the
compensator consists of a minimal-order Luenberger ob-
server and a constant gain state estimate controller.

4 Separation Principle

Finally, in this section, we show that the candidate com-
pensator given in the previous section is indeed an op-
timal solution to the DLQ problem. The essence of this
verification lies in the following important theorem.
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Theorem 4.1 The indiviual solutions of the optimal
control and optimal estimation given by (10), (11) and
(17) — (24), jointly provide a minimizing solution given

PPN -

by (25) — (30) io the overaii DLQ probiem.
Proof: Recall that the DLQ cost was given by
J = Tr[MT]
where M satisfies (8). Write the cost J as
J =Tr[(M-Y+Y)I]

ATY + YA + FTRF = 0

F=[(F-HC) -G].
Let A = M —Y and note that

ATA + AA+ (A - FTRF) =0 (31)

where F* = —R-!BTK and K is the unique positive
semidefinite solution of the (11). Moreover, observe that
we can write

AT[’(f g]+[’§ g]A+(A—.‘FTRf)=0. (32)

Subtracting (31) from (32), recalling that A is a stable
matrix and invoking Lyapunov’s theorem {5}, we con-
clude that X o ]

A=1o0 o
Hence, we have
J = Tr[KV] + Tr[YT)]
which may be written in the equivalent form
J = Tr[KV] + Tr [Y¥TRF]
AY + VAT + T = 0. (33)
Furthermore, it is easily verified that

J=Tr [KV + PF*TRF"]

Yu-pP ¥ T
+Tr[ }-,17‘.2 ?22].7: RF
[p 0
Pe % 0]

P, € R(n=p)%(n-p) and is the unique positive definite
solution of (24). Note that (24) may be written in terms
of P;ie.,

AP+ PAT +V — H, V3 HT =0 .

Also, the fact that CP = 0, enables us to write

SRR LRI A

[ V-H,VpuHT 0
ve| TG



Subtracting (34) from (33), we obtain
3\ 7/ AY 73
AX + XAT + W =0
= H,VaeHT ¢
W = s ’
[ 0 Orx1 ]
and
Yn - P }’12 ]
X = >0
[ Y Yal©

by Lyapunov’s theorem [5]. Note that so far, we have
transformed the cost J into the form

J = Tr{KV + PF*TRF*] + Tr [XFTRF)

where the first term in J is simply a constant and thus
independent of the compensator parameters; hence only
the second term is to be minimized with respect to these
parameters.

To finish off the proof, we need only observe that
Tr fYﬂ]?ﬂ > 0 and Tr D(ﬂ}?ﬂ = 0 when eval-
uat.ed at (I" E“ L, G* H ‘) The first part of this ob-
servation is clear. To see the second part, we define the
transformation

|

1L o
7‘ - [ 11 -h.

Clearly, 7 is nonsingular and 77! = 7. Hence, after

evaluating the second term in the cost at the * quanti-

ties, we can write

=[Ip 9,].

Tr [X* F*TRF" Tr (X*TTTTF*TRF* TT)

Tr [X*TTFTRF'T)

i

i

where X* = TX*TT. Moreover, it is easy to verify that

where we have denote

we may write
Tr (X*TTF*TRFT] = Tr [X*W*)
ATX 4 XA + TTFTRF'T = 0.
Furthermore, straight forward algebra reveals that
Onxn 0
[ 0 G'TRG* ]

.. _ [4A+BF -BG*
Y lara i

(35)

TT TR T

Now provided A, is a stable matrix, from (35) and Lya-
punov’s theorem [3], we have
B

5 0 0
* nxn o
=% g,
ATX:, + XA, + G'TRG* = 0.
However, the stability of A, can be seen by rewriting
the equation (24) in terms of 4,; i.e,,

(36)

AP+ PAT 40 =0 (37
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— Vi VolyT
YizV 22 12

= P AT V14, P + Vi,

— &idfagz3¥ag 21410

and noting that @ is positive definite and hence by Lya-
punov’s theorem [5], A, is a stable matrix.

At this point, it is a trivial matter to see
that Tr [X*W*] = 0, and as a consequence,
Tr [X*F** RF*] = 0. Therefore, we conclude that

J Tr [KV + PF*TRF*] 4+ Tr [XFTRF]

> Tr[KV +PF*TRF*]

for all (I, E,L,G, H). Hence, (I*,E*,L*,G*, H*} is in-
deed a minimizing solution. Q.E.D.

5 Conclusion

An optimal compensation problem for deterministic LT1
systems with noise-free measurements is formulated.
Two subproblems of optimal control and optimal esti-
mation are introduced. Based, on the solution of these
two subproblems a candidate solution to the overall
problem is suggested Subsequently, it is proved that

bllia Ldlluldd’bc is .ll.l fdbl} -3 llllllllllibills DUIU.blULI Thlb SCp-
aration theorem is proved entirely by using Lyapunov’s
theorem and some matrix manipulations. The argu-
ments used in the proof are inspired by the proof of Rus-
sell [2]. Our proof is viewed as an extension of his result
to noise-free cases. Furthermore, our result is stronger,
since the class of compensators allowed in our formula-
tion is larger than that considered by Russell.
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