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A b s t r a c t  

We consider feedback systems where the plant and com- marized as follows. Consider a plant 
pensator are governed by arbitrary rational matrices. 
Several conventional methods of closed-loop stability 
analysis are examined. These include state-space theory, 
rational matrix analysis, Q-parametrization, and singular 
system theory. We show that existing methods are in- 
adequate to fully characterize closed-loop stability when 
non-strictly-proper systems are involved. Our analysis 
establishes a simple necessary condition under which the 
closed-loop system is stable. Our condition is then ap- 
plied to refine the existing methods. 

problems. For example, a state-space approach is taken 
in [3], p.79, [2], p.453, and [5], p.103 which can be sum- 

= Ax + Bul  

Yl = Cx + Dul 
P(s) = C(sI-A)-IB4-D 

and compensator 

i~ = Fz + Gu2 

y2 = Hz + Ku2 
C(s) = H ( s I -  F ) - I G  4- K. 

(i) 

(2) 

1 I n t r o d u c t i o n  

Consider a feedback system with plant P(s) and com- 
pensator C(s) as shown in Figure 1. We assume P(s) 

?'1 

Y2 '¢ 

P(s) ~Yl 

+ 

[" k< ~J'+ r2 

Figure 1: Feedback System 

and C(s) are matrices of rational functions with real co- 
efficients. Ordinarily, stability theory addresses the case 
where P is strictly proper and C is proper. Our intention 
is to conduct a careful analysis of the case where P and 
C are arbitrary. 

Several instances of feedback systems with neither P 
nor C strictly proper do appear in the literature, although 
the relaxation of strict properness appears to be more 
an artifact than a serious attempt at understanding such 

In the closed-loop system, 

~tl -- rl - ( g z  4- f((7,2 4- Cx 4- DUl)), 

SO 

ul = (I 4- K D ) - I ( - K C x  - Hz  4- 7" 1 - -  K7"2). 

Similarly, 

u2 = (I 4- D K ) - I ( C x  - DHz  4- Dr1 4- r2). 

Combining (1)-(4) yields 

[ A -  B(Z + KD)-~KC 
a(± + DK)-lC 

B(± + KD) -1 
4- G(I + D K ) - I D  

- B ( I  4- K D ) - I H  ] 
F - G(I 4- D K ) - I D H  J 

G(I + DK)  -1 r2 

(3) 

(4) 

x] 
z 

[ Y l ] _  
Y2 

C -  D(I  + K D ) - I K C  
K ( I  + D K ) - I C  

D(I  + KD) -1 
+ K ( I  + D K ) - I D  

- D ( I  + K D ) - I H  [ x ]  
H -  K ( I  + D K ) - I D H  z 

- D ( I  + K D ) - I K  ] [ rl ] 
K ( I  + DK) -1 r2 " 
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Consider the simple special case where the plant and com- 
pensator have order 0 (i.e x and z are 0-dimensional). 
Then the closed-loop system is governed by the algebraic 
equation [ 1 l l[ l ] o erood y 

Y2 K ( I  + D K ) - I D  K ( I  + D K )  -1 r2 " 
(5) 

More specifically, let D = 2 and K = -1 .  Then (5) be- 
comes 

 1]1 /0/ 
which describes a BIBO stable mapping from the inputs 
of the closed-loop system to the outputs. 

Another popular framework in which non-strictly- 
proper loop gains appear is that  of rational matrix analy- 
sis. According to a straightforward calculation, the 
closed-loop system in Figure 1 is governed by 

Y l  - -  

Y 2  - -  

[ 11 Y2 

where 

P ( I + C P )  1 
H -  ( I +  C p ) _ I  C p 

P ( r l  - y2) 

C(r2 -t- Yl) 

? ' 2  ' 

- P ( I + C P )  - l c  ] 
(I  + C P )  -1 C " 

(7) 

We assume det ( I  + C P )  ~ 0 for well-posedness. View- 
ing the set of p x m BIBO stable rational matrices as 
a ring, the class of all stabilizing compensators C for a 
given plant P can be parametrized according to the Q- 
parametrization (e.g. see [5], p.108). Suppose P has right 
and left-coprime factorizations 

p _ N D - 1  _ . ~ - 1 ~ .  

Then we may solve the left and right Bezout identities 

X N  + Y D  - I 

N X  + D Y -  I, 

yielding the desired parametrization 

S(P)  -- Q BIBO stable rational, (8) 

In particular, Q = 1 gives C = -1 .  Note that  this result 
is consistent with the previous example (6). 

Another setting in which the same type of issue arises 
is that  of singular systems (e.g. see [1]). Let the plant be 

E x  - A x  + B u l  

Yl = C x  

P ( s ) - C ( s E - A ) - I B  

and the compensator by 

(9) 

J~ = F z  + Gu2 

y2 = H z  

C(s) : H ( s J -  F ) - I G .  (10) 

The respective characteristic polynomials are Ap (s) = 
d e t ( s E - A )  and A t ( s )  = d e t ( s J - F ) .  For well- 
posedness of the closed-loop system, we assume that  the 
closed-loop characteristic polynomial 

Ad (s) = det - G C  s J -  F ~ O. 

In this setting, closed-loop asymptotic stability is equiv- 
alent to the conditions 

deg Ad -- rank(E) + rank(J) ,  (11) 

A~t Hurwitz. 

Letting E -  J -  0, A -  C -  F -  G -  H -  1, and 
B - - 2  yields C -  2, P - - 1 ,  and 

A d (s) -- det - 1  - 2  ] = - 1 .  
- 1  - 1  J 

Since Ad is constant and (11) is satisfied, the closed-loop 
system is stable. 

Finally, we mention that  closed-loop stability of our ex- 
ample system is also predicted by the simulation program 
Simulink. For example, one can compute the closed-loop 
step response by setting up the Simulink block diagram 
in Figure 2, yielding the output graphs in Figures 3 and 
4. 

In fact, any choice of inputs yields numerical outputs 
consistent with (6). 

Hence, we have seen that  all existing methods of analy- 
sis predict closed-loop stability for P = -2 ,  C = 1. Re- 
ducing the example to its essential elements, both theory 

For example, let P - 2. Then we can factor P into and simulation predict that  an ideal amplifier with gain 2 
N = N - 2, D -- D -- 1. One solution of the Bezout will be stable under unity feedback as shown in Figure 5. 
identities is X - J( = 0, Y - Y - 1, leading to the (Recall that  the original feedback configuration contains 
parametrization an extra inversion in the loop, cancelling the minus sign 

in P.)  Here we come face to face with a glaring contradic- 
[ Q 1 ]  tion: Laboratory experience dictates that such a feedback 

S(2) - l 1 - 2Q Q BIBO stable rational, Q ~ "~ ~ " configuration will never be stable. For example, one could 
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Figure 2: Simulink Diagram 
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Figure 5: Positive Feedback Loop 

Figure 3: y l  

wire up an electric circuit which closely approximates this 
configuration over a large bandwidth. The result would 
certainly be unstable because of positive feedback. It is 
clear that  a more refined method of analysis is required 
in order resolve the paradox. An appropriate resolution 
must ultimately lead to corrections in the analysis meth- 
ods discussed above. 

2 Perturbation Theory 

One way to treat the stability problem is to examine 
strictly proper perturbations of the plant and compen- 
sator and then apply conventional stability theory. That 
is, we first assume that we are given a pair of rational 
matrices P and C such that the closed-loop system is 

BIBO stable according to conventional analysis. Then 
we look at how strictly proper perturbations affect closed- 
loop poles. Central to our discussion will be the rational 
function 

R - det (I + CP)  

and its high-frequency limit 

Roo - lim R(a )  E [-oo, oo]. 
O ' - - - - +  O o  

Note that, for H to be BIBO stable, H must be proper, 
so, from (7), 

(I + CP)  -1 = I -  C ( P  (I + CP)  -1) 

is proper. Hence, R is not strictly proper, and Roo ~ O. 
The first question we must address is "What consti- 

tutes a perturbation of the plant?" Many topologies in 
rational function space can been described. In the inter- 
est of obtaining the strongest possible results, we adopt 
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the weakest topology tha t  suits our needs. We say tha t  so 
a sequence of rat ional  functions P~ --, P weakly if there 
exists cr < c~ such tha t  1) P~ has no pole in [0, ce) for R~(a~)  -- ( R k ( c ~ ) -  R ( a ~ ) )  + R ( a ~ )  --~ Roo. 
large k and 2) P~ --~ P pointwise on [or, c~). Weak con- 
vergence can be related to more familiar topologies. For For large k, 
example, let 

p ~ ( ~ )  = 

p(s )  = 

b q k 8  q -~ ...  -~- bo~ 

a r k s  r ~ ... -~- a o k  

bz s z -t- ... + bo 

S n ~ a n - 1 8  n - 1  -~- . . . -Jr -ao  

We say tha t  pk --~ p parametr ical ly  if 

q >_ I, r > _ n  

aik --~ ai; i -- O, ..., n - 1  

a n k  ---+ 1 

aik --* 0 +; i -- n + l ,  ..., r 

b~k --~ bi; i = O, ..., l 

bik --~ 0; i - - l ÷ l , . . . , q .  

Since Pk and C~ have no pole in [or, cx~), Rk is continuous 
on [ak, c~), so there exist ~rk > ak such tha t  Rk(~k) = 0. 
[] 

In short, Theorem 2 says that ,  if R ~  < 0, then every 
choice of weak, strictly proper  per tu rba t ions  of P and C 
yields closed-loop instabili ty result ing from an arbitrar-  
ily large, real, positive pole. Since weak convergence is 
so weak, every such feedback loop in practice must  ex- 
hibit extreme instability. Thus  a necessary condition for 
closed-loop stability is R ~  > 0. 

Returning to our example P = 2, C = - 1 ,  we ob- 
tain R = - 1  and R ~  < 0, which predicts the kind of 
instability observed in practice. As an example of weak 
per turbat ions ,  consider 

For matrices,  we say P k --+ P parametr ical ly  if each en- 2 
try converges parametrically.  One can easily prove the P k ( s ) -  1 Ck(" 
following result. ~ s + 1' 

T h e o r e m  1 I f  P k -~ P parametrical ly ,  then P k -~ P Then  
weakly. 

2 
Suppose we construct  weak per turba t ions  Pk --+ P and R k ( s )  -- 1 - (~ s  + ~ = 

Ck ~ C. Let t ing Rk -- de t ( I  + CkPk) ,  it is obvious 1)2 

from the definition of weak convergence tha t  Rk ~ R which has zeros A k -  (--1 ± 2)k.  
weakly. From (7), the zeros of R are poles of the closed- 
loop transfer function H.  Similarly, the zeros of Rk are 
poles of the pe r tu rbed  closed-loop system. This brings us 3 
to our central result. 

T h e o r e m  2 I f  P k  and Ck  are strict ly  proper, P k  --+ P 
and C k ~ C weakly, and R ~  < O, then there exist  crk C 
R such that  crk T c~ and R k ( ~ k )  - - 0  for  every k. 

P r o o f .  Since Pk and Ck are strictly proper,  

Rk(c~) = d e t ( / +  Ck(cx~)Pk(c~)) = det I = 1. 

Since Pk  -~ P and Ck ~ C pointwise, Rk --+ R pointwise 

1 

(~) = - ~ + i 

-~.s 2 + 2 s -  1 

(-~s + 1) 2 

Applications to Standard The- 
ory 

Now we may apply the condit ion R ~  > 0 to the various 
frameworks ment ioned in Section 1. First,  consider state- 
space systems (1)-(4). Since ( s I - A )  -1 is strictly proper,  
P ( ~ )  - D. Similarly, C ( ~ )  - J, and 

Roo -- det(l ÷ K D ) .  

on some [cr, c~). Hence, there  exists a sequence of integers Thus, for stability, the state-space description of P and 
kj I c~ such tha t  C must  satisfy 

de t ( I  ÷ K D )  > O. 1 
IRk(~ + j )  - R ( ~  + J)l < - Vk > k 5, Vj. 

3 In the case of rational matrix analysis, the appropriate 

Let modification of the Q-parametrization follows from 

a k - o + j  i f  kj  <_k < k j+l ,  

Then  c~k --+ c~ and 

j - 1 , 2 , 3 , . . .  R - 

1 
IRk(ak )  - R ( a k ) l  - IRk (a  + j )  - R ( a  + J)l < - 

3 

i f  kj  < k < k j+l ,  

det (I  + C P )  

d~t (I + (Y- Q#)-I (x + Q15)ND -1) 

det  ( Y  - Q N )  det  ( D ) 
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But 

= X N + Y D  + Q ( D N -  ND) - I +  Q. 0 = I, 

SO 

ROO 
limo~ (det ( Y ( a ) -  Q(~) /v (a ) )de t  (D(a)))  ' 

Hence, the set of stabilizing compensators for P is con- 
tained in 

^ + 

S(P) = Q BIBO stable rational, 

det (Y(oo) - Q(oo)/V(oo)) det (D(oo)) > 0  

which is smaller than S (P) (8). 
To analyze the singular system case, we recall from [6], 

p.159, that 

A~l (s) 
R(s)  -- det (I + C ( s )P  (s)) - A; (s) Ac (s)" 

Then 
R ~ - -  ~ ~/' i f A f - - O ,  F f - - O  

[ 7" oo, else 

Finally, for numerical simulation, it is an easy matter 
to compute Roo within any of the theoretical frameworks 
discussed above. Then it is a simple matter to generate an 
error message whenever an "algebraic loop" with Roo < 0 
is encountered. 
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M~EN~ 

M~JN~ 

0 

0 

0 f As , M p A N p - - [  
A f  0 L 

Fs ' 0 

0] 
ITb  p f ' 

0 
Inc f ' 

with AI and FI nilpotent. Then 

A, (s) 

~(~)  

= det (sI - As)det (sA s - I) 

= ( -1)  ~'s det ( s I -  As), 

-- det (sI - Fs) det (sFf - I) 

= ( -1)  ~s  det (sI - Fs), 

s I -  As BsHs 

= det -GsCs s I - F s  
0 BfHs 

-gsC~ 0 

0 B~H s 
-G~Cs 0 
s A f - I  B f H f  
- G s C s  sFs - I 

(12) 

R ~  is completely determined by the degrees and leading 
coefficients of the three polynomials. Assuming closed- 
loop stability, it follows from (11) and (12) that 

deg Act = rank (E)+rank (J) >_ nps+ncs = deg (Ap)+deg (A¢) 

with equality iff Af  - 0 and F s - 0. Let 7 be the leading 
coefficient of 

F ( s ) - - d e t [  I -  sA f 
[ GsCs 

-Bs~s 1 
I - s F f  " 
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