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Abstract

We consider feedback systems where the plant and com-
pensator are governed by arbitrary rational matrices.
Several conventional methods of closed-loop stability
analysis are examined. These include state-space theory,
rational matrix analysis, Q-parametrization, and singular
system theory. We show that existing methods are in-
adequate to fully characterize closed-loop stability when
non-strictly-proper systems are involved. Qur analysis
establishes a simple necessary condition under which the
closed-loop system is stable. Qur condition is then ap-
plied to refine the existing methods.

1 Introduction

Consider a feedback system with plant P{s) and com-
pensator C(s) as shown in Figure 1. We assume P(s)

P(s)

C(s) ¥y

Figure 1: Feedback System

and C(s) are matrices of rational functions with real co-
efficients. Ordinarily, stability theory addresses the case
where P is strictly proper and C is proper. Our intention
is to conduct a careful analysis of the case where P and
C are arbitrary.

Several instances of feedback systems with neither P
nor C strictly proper do appear in the literature, although
the relaxation of strict properness appears to be more
an artifact than a serious attempt at understanding such
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problems. For eiample, a state-space approach is taken
in (3], p.79, [2], p-453, and [5], p.103 which can be sum-
marized as follows. Consider a plant

z = Az+ Bu (1)
y1 = Czx+4 Duy
P(s) = C(sI—-A)™7'B+D

and compensator

2 = Fz4Gug (2)
yo = Hz+ Kug
C(s) = H(sI-F)"'G+K.
In the closed-loop system,
uy =11 — (Hz + K(re + Cz + Duq)),
80
up = I+ KDy Y (~KCx — Hz+1r, — Kra). (3)
Similarly,
ug = (I + DK) Y (Cx — DHz+ Dr; +13).  (4)
Combining (1)-(4) yields
i —
2| =
A-B(I+KD)'KC —B(I+KD)'H z
G(I + DK)™'C F-GU+DK)"'DH z
n B(I+KD)™! -B(I+KD)'K Ty
G(I + DK)™'D G(I+ DK)™1 7o
Y _
Y2
C—-D(I+KD)"lKC -D(I+KD)™'H z
K(I+ DK)™1C H-—-K(I+DK)'DH z
" DI+KD)™ —-DUI+KD)'K 71
K(I+DK)™'D K(I+DK)™! o |
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Consider the simple special case where the plant and com-
pensator have order 0 (i.e « and z are O-dimensional).
Then the closed-loop system is governed by the algebraic

equation

n - 3

More specifically, let D = 2 and K = —1. Then (5) be-

N FY R e | S

which describes a BIBO stable mapping from the inputs
of the closed-loop system to the outputs.

Another popular framework in which non-strictly-
proper loop gains appear is that of rational matrix analy-
sis. According to a straightforward calculation, the
closed-loop system in Figure 1 is governed by

DI+ KD)"* —-DUI+KD)'K
K(I+DK)™'D K(I+DK)™*!

-2 -2
2 1

71
T2

1 = P(ri—y)
yo = C(ra+u1)
Y . 71
HEEIME
where
[ PU+cp)™t —PUI+CP)'C
H“[(I+CP)—1CP (I+cp)'c ] ™

We assume det(I + CP) # 0 for well-posedness. View-
ing the set of p x m BIBO stable rational matrices as
a ring, the class of all stabilizing compensators C for a
given plant P can be parametrized according to the Q-
parametrization (e.g. see [5], p.108). Suppose P has right
and left-coprime factorizations

P=ND'=D"'N.
Then we may solve the left and right Bezout identities
XN+YD=I
NX+DY =1,
yielding the desired parametrization
o\ 1 ~
Y-QN) " (x+qD) |
@ BIBO stable rational,
det (Y - Qﬁ) £0

S(P) = (8)

For example, let P = 2. Then we can factor P into
N =N =2, D = D = 1. One solution of the Bezout
identities is X = X = 0, Y =Y = 1, leading to the
parametrization

S(2) = { 7 —QZQ | @ BIBO stable rational, Q # %} .

1
T9 ’

In particular, Q = 1 gives C = —1. Note that this result
is consistent with the previous example (6).

Another setting in which the same type of issue arises
is that of singular systems (e.g. see [1]). Let the plant be
governed by

Ez

Y1
P(s) = C(sE— A)"'B

and the compensator by

Az + Buy
Cz

Jz
Y2

C(s) = H(sJ — F)™'G.

Fz+ Gug
Hz

(10)

The respective characteristic polynomials are Ap(s) =
det (sE — A) and A, (s) det (sJ — F). For well-
posedness of the closed-loop system, we assume that the
closed-loop characteristic polynomial

sE—A BH

Aals)=det| " oo sy F

Z 0.

In this setting, closed-loop asymptotic stability is equiv-
alent to the conditions

deg Ay = rank(E) -+ rank(J),

Ay Hurwitz.

(11)

Letting F =J =0 A=C=F=G=H=1, and
B=-2yields C=2,P=—1, and
]2_1.

Since A is constant and (11) is satisfied, the closed-loop
system is stable.

Finally, we mention that closed-loop stability of our ex-
ample system is also predicted by the simulation program
Simulink. For example, one can compute the closed-loop
step response by setting up the Simulink block diagram
in Figure 2, yielding the output graphs in Figures 3 and
4.

In fact, any choice of inputs yields numerical outputs
consistent with (6).

Hence, we have seen that all existing methods of analy-
sis predict closed-loop stability for P = —2, C = 1. Re-
ducing the example to its essential elements, both theory
and simulation predict that an ideal amplifier with gain 2
will be stable under unity feedback as shown in Figure 5.
(Recall that the original feedback configuration contains
an extra inversion in the loop, cancelling the minus sign
in P.) Here we come face to face with a glaring contradic-
tion: Laboratory experience dictates that such a feedback
configuration will never be stable. For example, one could

-1
-1

-2

Ay (8) = det { 1
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Figure 2: Simulink Diagram
5 T T T T T T T T T

-0.2 0 0.2 0.4 0.6 0.8 1
Time {second)

Figure 3: y1

wire up an electric circuit which closely approximates this
configuration over a large bandwidth. The result would
certainly be unstable because of positive feedback. It is
clear that a more refined method of analysis is required
in order resolve the paradox. An appropriate resolution
must ultimately lead to corrections in the analysis meth-
ods discussed above.

2 Perturbation Theory

One way to treat the stability problem is to examine
strictly proper perturbations of the plant and compen-
sator and then apply conventional stability theory. That
is, we first assume that we are given a pair of rational
matrices P and C such that the closed-loop system is

Al ST U TN SUURUS SO SUUUTUUUURt SUPI
P ................................................ |
o ]
Wb i
A S T SN S S N
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Figure 4: y2

Figure 5: Positive Feedback Loop

BIBO stable according to conventional analysis. Then
we look at how strictly proper perturbations affect closed-
loop poles. Central to our discussion will be the rational
function

R =det (I + CP)

and its high-frequency limit

Ry = lim R(0) € [—00,00].
T—00
Note that, for H to be BIBO stable, H must be proper,
so, from (7),

(I+CP)'=I-CPUI+CP)™)

is proper. Hence, R is not strictly proper, and Re 5 0.
The first question we must address is “What consti-
tutes a perturbation of the plant?” Many topologies in
rational function space can been described. In the inter-
est of obtaining the strongest possible results, we adopt
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the weakest topology that suits our needs. We say that
a sequence of rational functions Py, — P weakly if there
exists o < oo such that 1) P} has no pole in [0, 00) for
large k and 2) P, — P pointwise on [0, c0). Weak con-
vergence can be related to more familiar topologies. For
example, let

bgrs? -+ ... + bog
arpST + ...+ aok
byst + ...+ by
s+ a,_ 18"+ . +ag

pr(s) =

p(s) =

We say that pr — p parametrically if

g =2 I, r=2n
ax — a5 1=0,.,n—1
ane — 1
ae — OV di=n4+1,.,r
bip, — by i=0,..,1
by — 0; i=1+1,..q.

For matrices, we say Py — P parametrically if each en-
try converges parametrically. One can easily prove the
following result.

Theorem 1 If P, — P parametrically, then Py, — P
weakly.

Suppose we construct weak perturbations P, — P and
Cr — C. Letting R, = det(I + CiPy), it is obvious
from the definition of weak convergence that Ry — R
weakly. From (7), the zeros of R are poles of the closed-
loop transfer function H. Similarly, the zeros of Ry, are
poles of the perturbed closed-loop system. This brings us
to our central result.

Theorem 2 If Py and Cy are strictly proper, P, — P
and C, — C weakly, and Ry < 0, then there exist oy, €
R such that oy, T 0o and Ri(ok) = 0 for every k.

Proof. Since Py and Cy, are strictly proper,
Ry (00) = det(I + Cr(oo)Pr(c0)) =det I =1.

Since P, — P and C, — C pointwise, Ry — R pointwise
on some [0, 00). Hence, there exists a sequence of integers
k; T oo such that

: . 1 ,
|Rx(o +j) — R(o + j)| < 7 vk > k;, V3.
Let
j=1,2,3,..

oap=0+7 tf kj <k <kjp,

Then oy — 00 and
. , 1
|Ri(ar) — R(ew)| = |Ri(0 + §) — R(o +§)| < z

if kj <k< kj+1,

Rk(ak) = (Rk(ak) — R(O(k)) -+ R(Ozk) — Roo-

For large k,
Rk(ak) <0< Rk(oo)

Since Py, and Cy, have no pole in [0, 00}, Ry, is continuous
on [ayg, 00), so there exist o > ay, such that Ri(ox) =0.
]

In short, Theorem 2 says that, if Ry, < 0, then every
choice of weak, strictly proper perturbations of P and C
yields closed-loop instability resulting from an arbitrar-
ily large, real, positive pole. Since weak convergence is
so weak, every such feedback loop in practice must ex-
hibit extreme instability. Thus a necessary condition for
closed-loop stability is Ry, > 0.

Returning to our example P = 2, C = —1, we ob-
tain R = —1 and Ro, < 0, which predicts the kind of
instability observed in practice. As an example of weak
perturbations, consider

2 1
P = C —_ e
k(s) %;S—Fl’ k(s) _11;5_}_1
Then
2 Le? 4251
Ri(s)=1- - 2:’c n k 5
(£5+1) (£s+1)

which has zeros A, = (—1+2) k.

3 Applications to Standard The-
ory

Now we may apply the condition R, > 0 to the various
frameworks mentioned in Section 1. First, consider state-
space systems (1)-(4). Since (sI — A)~! is strictly proper,
P{co) = D. Similarly, C(c0) = J, and

Reo = det(I + KD).

Thus, for stability, the state-space description of P and
C must satisfy

det(I + KD) > 0.

In the case of rational matrix analysis, the appropriate
modification of the Q-parametrization follows from

R = det(I+CP)
det (I + (Y - QJV>—1 (X + Qﬁ) ND—l)
det ((v - QN) D+ (X +QD) N)

det (Y - Qi\?) det (D) '
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But Then
R _{ v, if Ay =0, Ff =0
(Y—Q]V)D—l—(X—i—Qﬁ)N b v - 00, else
_ ~ ~o _ Finally, for numerical simulation, it is an easy matter
=XN+YD+QDN-ND)=I+Q-0=1, to compute R, within any of the theoretical frameworks

discussed above. Then it is a simple matter to generate an

50 error message whenever an “algebraic loop” with Ry, < 0
R - 1 is encountered.
lim (det (Y(or) - Q(a)ﬁ(a)) det (D(a)))
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I, O A 0
wav, = [ ][4 1]
In,, O _{Fs O
McJNc - [ 0 Ff ] ) McFNc"_ [ 0 Incf ] bl

with Ay and Fy nilpotent. Then

Ap(s) = det(sl— As)det(sdy —1I) (12)
= (=1)" det (s — A,),
Ac(s) = det(sl —F;)det(sFf—1I)
= (=1)"f det (s — F3),
sI— A, B,H, 0 B;Hy
Ac(s) = det G(';CS Séf Hljs s AC;S_C f[ B f(}{f
—Gsz 0 —Gfo SFf—I

R, is completely determined by the degrees and leading
coefficients of the three polynomials. Assuming closed-
loop stability, it follows from (11) and (12) that

deg Ay = rank (E)+rank (J) > nps+ncs = deg (A,)+deg (Ac)

with equality iff Ay =0 and Fy = 0. Let v be the leading
coeflicient of

I— SAf —Bfo

T'(s) =det G;C; I—sFy |
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